Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tributyl phosphate uranium

An improved solvent extraction process, PUREX, utilizes an organic mixture of tributyl phosphate solvent dissolved in a hydrocarbon diluent, typically dodecane. This was used at Savannah River, Georgia, ca 1955 and Hanford, Washington, ca 1956. Waste volumes were reduced by using recoverable nitric acid as the salting agent. A hybrid REDOX/PUREX process was developed in Idaho Falls, Idaho, ca 1956 to reprocess high bum-up, fuUy enriched (97% u) uranium fuel from naval reactors. Other separations processes have been developed. The desirable features are compared in Table 1. [Pg.202]

Refining to a High Purity Product. The normal yeUowcake product of uranium milling operations is not generaUy pure enough for use ia most nuclear appHcations. Many additional methods have been used to refine the yeUowcake iato a product of sufficient purity for use ia the nuclear iadustry. The two most common methods for refining uranium to a high purity product are tributyl phosphate (TBP) extraction from HNO solutions, or distiUation of UF, siace this is the feedstock for uranium enrichment plants. [Pg.318]

In TBP extraction, the yeUowcake is dissolved ia nitric acid and extracted with tributyl phosphate ia a kerosene or hexane diluent. The uranyl ion forms the mixed complex U02(N02)2(TBP)2 which is extracted iato the diluent. The purified uranium is then back-extracted iato nitric acid or water, and concentrated. The uranyl nitrate solution is evaporated to uranyl nitrate hexahydrate [13520-83-7], U02(N02)2 6H20. The uranyl nitrate hexahydrate is dehydrated and denitrated duting a pyrolysis step to form uranium trioxide [1344-58-7], UO, as shown ia equation 10. The pyrolysis is most often carried out ia either a batch reactor (Fig. 2) or a fluidized-bed denitrator (Fig. 3). The UO is reduced with hydrogen to uranium dioxide [1344-57-6], UO2 (eq. 11), and converted to uranium tetrafluoride [10049-14-6], UF, with HF at elevated temperatures (eq. 12). The UF can be either reduced to uranium metal or fluotinated to uranium hexafluoride [7783-81-5], UF, for isotope enrichment. The chemistry and operating conditions of the TBP refining process, and conversion to UO, UO2, and ultimately UF have been discussed ia detail (40). [Pg.318]

In practice, uranium ore concentrates are first purified by solvent extraction with tributyl phosphate in kerosene to give uranyl nitrate hexahydrate. The purified uranyl nitrate is then decomposed thermally to UO (eq. 10), which is reduced with H2 to UO2 (eq. 11), which in turn is converted to UF by high temperature hydrofluorination (eq. 12). The UF is then converted to uranium metal with Mg (eq. 19). [Pg.320]

The separation of basic precipitates of hydrous Th02 from the lanthanides in monazite sands has been outlined in Fig. 30.1 (p. 1230). These precipitates may then be dissolved in nitric acid and the thorium extracted into tributyl phosphate, (Bu"0)3PO, diluted with kerosene. In the case of Canadian production, the uranium ores are leached with sulfuric acid and the anionic sulfato complex of U preferentially absorbed onto an anion exchange resin. The Th is separated from Fe, A1 and other metals in the liquor by solvent extraction. [Pg.1255]

Then the fuel elements are dissolved in 7m HNO3 to give a solution containing U and Pu which, in the widely used plutonium-uranium-reduction, or Purex process, are extracted into 20% tributyl phosphate (TBP) in kerosene leaving most of the fission products... [Pg.1260]

Solvent Extraction. A modified, one-cycle PUREX process is used at Rocky Flats to recover plutonium from miscellaneous Pu-U residues (11). The process utilizes the extraction of uranium (VI) into tributyl phosphate (TBP), leaving plutonium (III) in the raffinate. The plutonium is then sent to ion exchange for... [Pg.372]

The effect of irradiation on the extractability of sulfoxides towards plutonium, uranium and some fission products were studied by Subramanian and coworkers . They studied mainly the effect of irradiation on dihexyl sulfoxide (DHSO) and found that irradiation did not change the distribution coefficient for Ru, Eu and Ce but increases the distribution coefficient for Zr and Pu. When comparing DHSO and tributyl phosphate (TBP), the usual solvent for the recovery and purification of plutonium and uranium from spent nuclear fuels, the effect of irradiation to deteriorate the extraction capability is much larger in TBP. Lan and coworkers studied diphenyl sulfoxides as protectors for the gamma radiolysis of TBP. It was found that diphenyl sulfoxide can accept energy from two different kinds of excited TBP and thus inhibits the decomposition of the latter. [Pg.911]

Figure 5.33 Uranium purification process by tributyl phosphate (TBP). Figure 5.33 Uranium purification process by tributyl phosphate (TBP).
The extractant is a commercial mixture of mono- and dioctyl phenyl phosphoric acid (OPPA). It is used in conjuction with tributyl phosphate (TBP). Stripping is by ammonium carbonate solution. The mixture shows synergism. Uranium is extracted in the tetravalent state. The process is much less expensive and possesses a higher extracting power than D2EHPA-TOPO combination. [Pg.552]

Dapex [Di-alkylphosphoric acid extraction] A process for the solvent extraction of uranium from sulfuric acid solutions using di-(2-ethylhexyl) phosphoric acid (HDEHP). The HDEHP is dissolved in kerosene containing 4 percent of tributyl phosphate. The uranium is stripped from the organic phase by aqueous sodium carbonate and precipitated as uranyl peroxide (yellow cake). The process was no longer in use in 1988. See also Amex. [Pg.79]

Fuel. The nuclear fuel cycle starts with mining of the uranium ore, chemical leaching to extract the uranium, and solvent extraction with tributyl phosphate to produce eventually pure uranium oxide. If enriched uranium is required, the uranium is converted to the gaseous uranitim hexafluoride for enrichment by gaseous diffusion or gas centrifuge techniques, after which it is reconverted to uranium oxide. Since the CANDU system uses natural uranium, I will say no more about uranium enrichment although, as I m sure you appreciate, it is a major chemical industry in its own right. [Pg.323]

Finely-ground monazite is treated with a 45% NaOH solution and heated at 138°C to open the ore. This converts thorium, uranium, and the rare earths to their water-insoluble oxides. The insoluble residues are filtered, dissolved in 37% HCl, and heated at 80°C. The oxides are converted into their soluble chlorides. The pH of the solution is adjusted to 5.8 with NaOH. Thorium and uranium are precipitated along with small quantities of rare earths. The precipitate is washed and dissolved in concentrated nitric acid. Thorium and uranium are separated from the rare earths by solvent extraction using an aqueous solution of tributyl phosphate. The two metals are separated from the organic phase by fractional crystallization or reduction. [Pg.929]

The uranium is separated, after dissolving the sample as described for lead, by extraction with tributyl phosphate (TBP) from 4M nitric acid. After the organic phase is scrubbed with 4M nitric acid, the uranium is back-extracted into distilled water and evaporated to dryness. The uranium is loaded on a rhenium filament for analysis by dissolving the purified sample in a small volume of 0.05M nitric acid. [Pg.87]

Reprocessing is based on liquid-liquid extraction for the recovery of uranium and plutonium from used nuclear fuel (PUREX process). The spent fuel is first dissolved in nitric acid. After the dissolution step and the removal of fine insoluble solids, an organic solvent composed of 30% TriButyl Phosphate (TBP) in TetraPropylene Hydrogenated (TPH) or Isopar L is used to recover both uranium and plutonium the great majority of fission products remain in the aqueous nitric acid phase. Once separated from the fission products, back-extraction combined with a reduction of Pu(I V) to Pu(III) allows plutonium to be separated from uranium these two compounds can be recycled.2... [Pg.198]

The uranium and plutonium are recovered for further use by first dissolving the spent fuel in nitric acid and subjecting the resulting solution to a solvent extraction process. Several different processes exist, the best known being the Purex process (Fig. 18), in which tributyl phosphate (TBP) (30% solution in kerosene) is the extractant. Extraction is carried out in compact mixer-settlers or air-pulsed columns fabricated of stainless steel, with about 99.9% removal of uranium and plutonium in the extract. [Pg.500]

Solvent Extraction. The yellow cake is dissolved in nitric acid and extracted from this aqueous phase by 5 percent tributyl phosphate (TBP) in a hydrocarbon diluent. The diluent reduces the density and viscosity of the TBP, enhancing the aqueous/solvent phase separation. The extraction is very specific for uranium, with separation factors of 103 to 105. The product thus obtained is an aqueous uranyl nitrate solution (Fig. 21.14). [Pg.963]

The control of the actinide metal ion valence state plays a pivotal role in the separation and purification of uranium and plutonium during the processing of spent nuclear fuel. Most commercial plants use the plutonium-uranium reduction extraction process (PUREX) [58], wherein spent fuel rods are initially dissolved in nitric acid. The dissolved U and Pu are subsequently extracted from the nitric solution into a non-aqueous phase of tributyl phosphate (TBP) dissolved in an inert hydrocarbon diluent such as dodecane or odourless kerosene (OK). The organic phase is then subjected to solvent extraction techniques to partition the U from the Pu, the extractability of the ions into the TBP/OK phase being strongly dependent upon the valence state of the actinide in question. [Pg.453]

Chemex [Chemical exchange] A process for separating uranium isotopes, based on the equilibrium between U3+ and U4+ in aqueous solution. U-238 concentrates in the LP+ state and U-235 in the U4+. Uranium in the two valence states is separated by solvent extraction into tributyl phosphate. Developed and piloted in France but not commercialized. [Pg.73]

UREX [URanium Extraction] A solvent extraction process for extracting uranium and technetium from used nuclear fuel, while rejecting all the transuranic elements. Based on the Purex process, which uses tributyl phosphate in a hydrocarbon mixture, but incorporating acetohydroxamic acid, which complexes the Pu and Np and thereby prevents them from being extracted. Developed by the Westinghouse Savannah River Company in 2003. Associated processes are NPEX, TRUEX, and Cyanex 301. [Pg.382]

Uranium is deposited widely in the Earth s crust, hence it has few ores, notably the oxides uraninite and pitchblende. The ores are leached with H2SO4 in the presence of an oxidizing agent such as NaClOs or Mn02, to oxidize all the uranium to the (+6) state as a sulfate or chloride complex. On neutralization with ammonia a precipitate of yellow cake , a yellow solid with the approximate composition (NH4)2U207 is formed. This is converted into UO3 on ignition at 300 °C. This can be purified further by conversion into uranyl nitrate, followed by solvent extraction using tributyl phosphate in kerosene as the extractant. [Pg.148]

Ryon, Daley, and Lowrie [Chem. Eng. Prog., 55(10), 70, (1959), U.S. AFC ORNL-2951, I960]. Continuous extraction of uranium from sulfate-ore-leach liquors and kerosine + tributyl phosphate and di(2-ethylhexyl)-phosphoric acid baffled vessels, turbine agitated. There is strong evidence of the influence of a slow chemical reaction. [Pg.1290]

Simard et al. [Can. J. Chem. Eng., 39, 229 (1961)]. Continuous extraction of uranium from aqueous nitrate solutions into kerosine + tributyl phosphate and from sulfate solutions containing tricaprylamine unbaffled vessel, propeller agitated. Process details for high recovery and low reagent costs. [Pg.1290]

Fundamental studies have been reported using the cationic liquid ion exchanger di(2-ethylhexyl) phosphoric acid in the extraction of uranium from wet-process phosphoric acid (H34), yttrium from nitric acid solution (Hll), nickel and zinc from a waste phsophate solution (P9), samarium, neodymium, and cerium from their chloride solutions (12), aluminum, cobalt, chromium, copper, iron, nickel, molybdenum, selenium, thorium, titanium, yttrium, and zinc (Lll), and in the formation of iron and rare earth di(2-ethylhexyl) phosphoric acid polymers (H12). Other cationic liquid ion exchangers that have been used include naphthenic acid, an inexpensive carboxylic acid to separate copper from nickel (F4), di-alkyl phosphate to recover vanadium from carnotite type uranium ores (M42), and tributyl phosphate to separate rare earths (B24). [Pg.63]

Such experiments show that oxalate, tartrate, and citrate give fairly strong complexes, and indeed these mixtures do not suffer quite such rapid oxidation as the other systems (57, 70). Stability constants for the complexing of U(III) by acetate, 2-hydroxy-2-methylpropionate, nitriloacetate, trans-cyclohexyl-1,2-diaminotetraacetate, ethylenedi-amine tetraacetate, and diethylenetriamine pentaacetate have been reported, but no pure compounds have been isolated (71). Thiocyanate also accelerates oxidation of the uranium, but the blue complex that is formed can be extracted with triethyl phosphate, tributyl phosphate, or better, trioctyl phosphine oxide the organic extract decomposes only slowly (45, 72). [Pg.74]


See other pages where Tributyl phosphate uranium is mentioned: [Pg.294]    [Pg.294]    [Pg.1255]    [Pg.1273]    [Pg.911]    [Pg.108]    [Pg.325]    [Pg.957]    [Pg.709]    [Pg.523]    [Pg.596]    [Pg.903]    [Pg.2486]    [Pg.331]    [Pg.318]    [Pg.971]    [Pg.974]    [Pg.191]    [Pg.68]    [Pg.69]    [Pg.70]    [Pg.903]   


SEARCH



2.4.5- Tributyl

Uranium phosphates

© 2024 chempedia.info