Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Up fluorescence

FIGURE 21.21 Fine-needle aspiration biopsy of a breast mass. (A) Papanicolaou stain. (B) Diff-Quik smears of cytomorphologically invasive ductal carcinoma. (C) HER2/neu moderate complete strong membranous staining (score 2+) (FIP). At follow-up fluorescence in situ hybridization showed amplification. Such cytology specimens must be formalin fixed. [Pg.914]

Ultra pH-sensitive (UPS) fluorescent nanoprobes with a 355-fold signal amplification in tumor relative to blood after systemic injection were recently established [40]. UPS probes possess an ultra pH-sensitive core copolymer (poly (ethylene glycol)-b-poly (2-(hexamethyleneimino) ethyl methacrylate) with micellar transitions within 0.25 pH units, fluorophores and cRGD for broad targeting of the tumor vasculature. The pH responsiveness is based on pH-dependent micellization of the core, micellization induced self-quenching of conjugated fluorophores (homoFRET), whereas micelle dissociation in acidic conditions resulted in an increased fluorescence signal. Systemic... [Pg.314]

The sample is pyrolyzed in an 80/20 mixture of oxygen and nitrogen at from 1050 to 1100°C the combustion gases are analyzed by iodine titration or by UV fluorescence. Up to 20% of the sulfur can escape analysis, however. [Pg.32]

A number of surface-sensitive spectroscopies rely only in part on photons. On the one hand, there are teclmiques where the sample is excited by electromagnetic radiation but where other particles ejected from the sample are used for the characterization of the surface (photons in electrons, ions or neutral atoms or moieties out). These include photoelectron spectroscopies (both x-ray- and UV-based) [89, 9Q and 91], photon stimulated desorption [92], and others. At the other end, a number of methods are based on a particles-in/photons-out set-up. These include inverse photoemission and ion- and electron-stimulated fluorescence [93, M]- All tirese teclmiques are discussed elsewhere in tliis encyclopaedia. [Pg.1795]

Figure C 1.5.13. Schematic diagram of an experimental set-up for imaging 3D single-molecule orientations. The excitation laser with either s- or p-polarization is reflected from the polymer/water boundary. Molecular fluorescence is imaged through an aberrating thin water layer, collected with an inverted microscope and imaged onto a CCD array. Aberrated and unaberrated emission patterns are observed for z- and xr-orientated molecules, respectively. Reprinted with pennission from Bartko and Dickson [148]. Copyright 1999 American Chemical Society. Figure C 1.5.13. Schematic diagram of an experimental set-up for imaging 3D single-molecule orientations. The excitation laser with either s- or p-polarization is reflected from the polymer/water boundary. Molecular fluorescence is imaged through an aberrating thin water layer, collected with an inverted microscope and imaged onto a CCD array. Aberrated and unaberrated emission patterns are observed for z- and xr-orientated molecules, respectively. Reprinted with pennission from Bartko and Dickson [148]. Copyright 1999 American Chemical Society.
Another example of the role played by a nonradiative relaxation pathway is found in the photochemistry of octatetraene. Here, the fluorescence lifetime is found to decrease dramatically with increasing temperature [175]. This can be assigned to the opening up of an efficient nonradiative pathway back to the ground state [6]. In recent years, nonradiative relaxation pathways have been frequently implicated in organic photochemistry, and a number of articles published on this subject [4-8]. [Pg.276]

Both these acids are colourless, but the spots of each acid on a filter-paper strip show up in ultraviolet light as intense blue fluorescent zones. They can also be detected, but considerably less sensitively, by spraying with ethanolic ferric chloride solution, which gives with N-methylanthranilic acid a purple-brown coloration. [Pg.53]

Inspect the paper in ultraviolet light—conveniently in front on a Hanovia ultraviolet strip light—in a dark room. The acids show up as intense blue fluorescent spots. Mark with a pencil the positions of all spots. The position of the two spots arising from solution (C) should be compared with the single spots arising from solutions (A) and (B). It is probable that the solution (B) of pure N-methylan-thranilic acid may also reveal a faint spot corresponding to anthranilic acid still present in minute traces in the methylated acid cf. p. 223). [Pg.54]

A dye molecule has one or more absorption bands in the visible region of the electromagnetic spectrum (approximately 350-700 nm). After absorbing photons, the electronically excited molecules transfer to a more stable (triplet) state, which eventually emits photons (fluoresces) at a longer wavelength (composing three-level system.) The delay allows an inverted population to build up. Sometimes there are more than three levels. For example, the europium complex (Figure 18.15) has a four-level system. [Pg.132]

Acronyms abound in phofoelecfron and relafed specfroscopies buf we shall use only XPS, UPS and, in Sections 8.2 and 8.3, AES (Auger elecfron specfroscopy), XRF (X-ray fluorescence) and EXAFS (exfended X-ray absorption fine sfmcfure). In addition, ESCA is worth mentioning, briefly. If sfands for elecfron specfroscopy for chemical analysis in which elecfron specfroscopy refers fo fhe various branches of specfroscopy which involve fhe ejection of an elecfron from an atom or molecule. Flowever, because ESCA was an acronym infroduced by workers in fhe field of XPS if is mosf often used to refer to XPS rather than to electron spectroscopy in general. [Pg.290]

In a skimmed supersonic jet, the parallel nature of the resulting beam opens up the possibility of observing spectra with sub-Doppler resolution in which the line width due to Doppler broadening (see Section 2.3.4) is reduced. This is achieved by observing the specttum in a direction perpendicular to that of the beam. The molecules in the beam have zero velocity in the direction of observation and the Doppler broadening is reduced substantially. Fluorescence excitation spectra can be obtained with sub-Doppler rotational line widths by directing the laser perpendicular to the beam. The Doppler broadening is not removed completely because both the laser beam and the supersonic beam are not quite parallel. [Pg.398]

Iodine vapor is characterized by the familiar violet color and by its unusually high specific gravity, approximately nine times that of air. The vapor is made up of diatomic molecules at low temperatures at moderately elevated temperatures, dissociation becomes appreciable. The concentration of monoatomic molecules, for example, is 1.4% at 600°C and 101.3 kPa (1 atm) total pressure. Iodine is fluorescent at low pressures and rotates the plane of polarized light when placed in a magnetic field. It is also thermoluminescent, emitting visible light when heated at 500°C or higher. [Pg.360]

In fluorescent lamps, phosphors are coated on the inside of the lamp tube using a slurry containing the powder and a Hquid which is either poured down through the tube, up-flushed, or in some cases the tubes are filled and then drained. Because of concerns over having volatile organic solvents in the air, the hquid medium containing the powder is usually water with an added agent, a thickener, to increase the viscosity of the suspension, such as poly(methacryhc... [Pg.286]

Fluorescent Dyestuffs. Very few dyes are of use in making daylight-fluorescent products. Of the dyes discovered up to 1920, only the brilliant ted and salmon dyes of the rhodamine and rosamine classes ate used in fluorescent materials in the 1990s. The first of these, Rhodamine B, was discovered in 1877. Fluorescence excited by both uv and visible light components in daylight was formally recognized as a notable property of certain dyed fabrics by the 1920s (1). [Pg.294]

A nearby molecule with a conjugated system may rob the dye molecule of its electronic energy. On the other hand, a fluorescent dye can pick up electronic energy from such a substance, called a sensitizer, with increased fluorescence. [Pg.300]

Several instmmental methods are available for quantitative estimation of from moderate to trace amounts of cerium in other materials. X-ray fluorescence is widely available, versatile, and suitable for deterrninations of Ce, and any other Ln, at percent levels and lower in minerals and purer materials. The uv-excited visible luminescence of cerium is characteristic and can be used to estimate Ce content, at ppm levels, in a nonluminescing host. X-ray excited optical luminescence (15), a technique especially appropriate for Ln elements including cerium, rehes on emissions in the visible, and also measures ppm values. Atomic emission spectrometry is appHcable to most lanthanides, including Ce (16). The precise lines used for quantitative measurement must be chosen with care, but once set-up the technique is suitable for routine analyses. [Pg.368]

At X-ray fluorescence analysis (XRF) of samples of the limited weight is perspective to prepare for specimens as polymeric films on a basis of methylcellulose [1]. By the example of definition of heavy metals in film specimens have studied dependence of intensity of X-ray radiation from their chemical compound, surface density (P ) and the size (D) particles of the powder introduced to polymer. Have theoretically established, that the basic source of an error of results XRF is dependence of intensity (F) analytical lines of determined elements from a specimen. Thus the best account of variations P provides a method of the internal standard at change P from 2 up to 6 mg/sm the coefficient of variation describing an error of definition Mo, Zn, Cu, Co, Fe and Mn in a method of the direct external standard, reaches 40 %, and at use of a method of the internal standard (an element of comparison Ga) value does not exceed 2,2 %. Experiment within the limits of a casual error (V changes from 2,9 up to 7,4 %) has confirmed theoretical conclusions. [Pg.104]


See other pages where Up fluorescence is mentioned: [Pg.253]    [Pg.252]    [Pg.148]    [Pg.298]    [Pg.253]    [Pg.252]    [Pg.148]    [Pg.298]    [Pg.546]    [Pg.1124]    [Pg.1716]    [Pg.1791]    [Pg.1976]    [Pg.2126]    [Pg.2493]    [Pg.2502]    [Pg.2826]    [Pg.3029]    [Pg.304]    [Pg.392]    [Pg.327]    [Pg.234]    [Pg.27]    [Pg.206]    [Pg.273]    [Pg.274]    [Pg.284]    [Pg.296]    [Pg.303]    [Pg.304]    [Pg.304]    [Pg.402]    [Pg.266]    [Pg.319]    [Pg.413]    [Pg.463]    [Pg.527]    [Pg.68]   
See also in sourсe #XX -- [ Pg.125 ]

See also in sourсe #XX -- [ Pg.125 ]




SEARCH



Femtosecond fluorescence up-conversion

Femtosecond fluorescence up-conversion microscope

Fluorescence up-conversion

Fluorescence up-conversion apparatus

Fluorescence up-conversion microscope

Fluorescence up-conversion technique

© 2024 chempedia.info