Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unsaturated Cyanohydrins

Treatment of 2-cyclohexenone with HCN/KCN yields a saturated keto nitrile rather than an unsaturated cyanohydrin. Show the structure of the product, and propose a I. mechanism for the reaction. [Pg.729]

Van den Nieuwendijk, A.M.C.H., Ghisaidoobe, A.B.T., Overkleeft, H.S. et al. (2004) Conversion of chiral unsaturated cyanohydrins into chiral carba- and heterocycles via ring-closing metathesis. Tetrahedron, 60, 10385-10396. [Pg.123]

The formation of unsaturated cyanohydrins (from a, -unsaturated aldehydes) is of further advantage as these products possess an additional synthetic potential. As in the saturated cyanohydrins (above in Scheme 6) they possess the same opportunities for elaboration of the hydroxyl or nitrile moiety, although the presence of the carbon-carbon double bond offers the possibility for additional transformations to be performed such as additions [108], oxidative cleavage [117,118] and epoxidation [119] (Scheme 7). Thus, these highly functionalised chiral units can be of greater importance to an organic chemist. [Pg.51]

Scheme 7. Some opportunities for transformations of unsaturated cyanohydrins... Scheme 7. Some opportunities for transformations of unsaturated cyanohydrins...
Acyl cyanides.2 Aromatic and a, 3-unsaturated cyanohydrins are oxidized efficiently to acyl cyanides by t-butyl hydroperoxide in benzene in the presence of RuC12[P(QH5)3]3. [Pg.54]

Not surprisingly, active M11O2 is able to oxidize unsaturated cyanohydrins, resulting in the generation of acyl cyanides. Interestingly, both the formation of the cyanohydrins by reaction of aldehydes with cyanide, and the hydrolysis of acyl cyanides with MeOH, resulting in the formation of methyl esters, can be carried out in situ with the MnC>2 oxidation. Thus, Corey et al. proved68 that aldehydes can be directly transformed into methyl esters by treatment with NaCN and active MnC>2 in a mixture of acetic acid and methanol. This represents a useful protocol for the oxidation of unsaturated aldehydes to esters. [Pg.306]

Unsaturated chiral cyanohydrins bear another synthetically interesting functionality, the C-C double bond. Among the opportunities of transforming unsaturated cyanohydrins, oxidative cleavage [208, 215], epoxidation [209, 210], iodolactonisation [209], addition reactions [211, 212, 216] and metal assisted... [Pg.219]

Croton aldehyde (2-butenal), like many other a,p-unsaturated aldehydes, is a good substrate for almond HNL [98,125]. The unsaturated cyanohydrin (/ , )-2-hydroxy-3-pen-tenenitrile can be used, after protection of the hydroxyl group, as a potential chiral C3-synthon in which the double bond serves as a masked oxygen functionality. [Pg.315]

Scheme 6 Pinner reaction and subsequent epoxidation of unsaturated cyanohydrins 2. Scheme 6 Pinner reaction and subsequent epoxidation of unsaturated cyanohydrins 2.
The allylic geminal diacetate 141 undergoes the monoallylation of malonates to give 142 and the two regioisomers 143 and 144[93,94]. The dimethylacetal 145 or ortho esters of aromatic and a,/3-unsaturated carbonyl compounds react with trimethylsilyl cyanide to give the methyl ether of cyanohydrin[95]. [Pg.310]

The outstanding chemical property of cyanohydrins is the ready conversion to a-hydroxy acids and derivatives, especially a-amino and a,P-unsaturated acids. Because cyanohydrins are primarily used as chemical intermediates, data on production and prices are not usually pubUshed. The industrial significance of cyanohydrins is waning as more direct and efficient routes to the desired products are developed. Acetone cyanohydrin is the world s most prominent industrial cyanohydrin because it offers the main route to methyl methacrylate manufacture. [Pg.410]

Michael addition of aromatic or heterocyclic aldehydes (via cyanohydrins) to o. unsaturated systems. Also addilion of aliphatic aldehydes catalyzed by thiazoFium yKds... [Pg.364]

The requisite starting cyanohydrin is readily prepared from a 20-keto-pregnane substitution at C-21 has no effect on the success of this step. However, the stability of the cyanohydrin is markedly dependent on other features of the molecule thus a 3-acetate confers greater stability than the free alcohol, and a 3-ketone is so unstable that subsequent dehydration with phosphorus oxychloride gives poor yields of the A -unsaturated nitrile. [Pg.218]

Hydroxy-20-cyanohydrins can be oxidized to 3-ketones in good yield with chromic acid, and the osmate ester of the unsaturated nitrile is also stable to this oxidant. " After hydrolysis of the osmate ester, the new 17-hydroxy-20-cyanohydrin which is presumably formed cannot be isolated, but loses hydrogen cyanide during the hydrolysis, and only the 17a-hydroxy-20-ketone is obtained. [Pg.218]

The addition of HCN to aldehydes or ketones produces cyanohydrins. This is an equilibrium reaction. For aldehydes and aliphatic ketones the equilibrium lies to the right therefore the reaction is quite feasible, except with sterically hindered ketones such as diisopropyl ketone. However, ketones ArCOR give poor yields, and the reaction cannot be carried out with ArCOAr since the equilibrium lies too far to the left. With aromatic aldehydes the benzoin condensation (16-54) competes. With oc,p-unsaturated aldehydes and ketones, 1,4 addition competes (15-33). Ketones of low reactivity, such as ArCOR, can be converted to cyanohydrins by treatment with diethylaluminum cyanide (Et2AlCN see OS VI, 307) or, indirectly, with cyanotrimethylsilane (MesSiCN) in the presence of a Lewis acid or base, followed by hydrolysis of the resulting O-trimethylsilyl cyanohydrin (52). The use of chiral additives in this latter reaction leads to cyanohydrins with good asymmetric... [Pg.1239]

Leahy demonstrated that unsaturation at the 5-position of a 4-cyano-l,3-dioxane can lead to a reversal in selectivity [12] (Eq. 6). Alkylation of cyanohydrin acetonide 19 with benzyl bromide generated a 9 1 mixture of 20 and 21, with the flufz-isomer 20 predominating, in 57% overall yield. An alkylithium intermediate in which overlap with the methylidene tt orbital favors the axial configuration could account for this anomalous selectivity. [Pg.56]

Biomimetic reactions should also be considered for the preparation of optically active cyanohydrins (using a cyclic dipeptide as catalyst) and also for the epoxidation of a, (3-unsaturated ketones (using polyleucine or congener as a catalyst). [Pg.40]

Me3SiCN reacts with both saturated and unsaturated aldehydes and ketones to given silylated cyanohydrines. This reaction has been particularly useful for the regioselective protection of a carbonyl in p. quinones and p. quinol antibiotic metabolite has been prepared. [Pg.201]

The potassium cyanide complex of 18-crown-6 in benzene or acetonitrile undergoes Michael addition to unsaturated carbonyl compounds (Liotta et al., 1977). In the presence of acetone cyanohydrin, the catalytic (i.e. catalytic in potassium cyanide and crown ether) cycle for hydrocyanation shown in (21)... [Pg.340]

Olefination of the Aldehyde 178 using a stabilized Wittig reagent followed by protecting group chemistry at the lower branch and reduction of the a,p-unsaturated ester afforded the allylic alcohol 179 (Scheme 29). The allylic alcohol 179 was then converted into an allylic chloride and the hydroxyl function at the lower branch was deprotected and subsequently oxidized to provide the corresponding aldehyde 161 [42]. The aldehyde 161 was treated with trimethylsilyl cyanide to afford the cyanohydrin that was transformed into the cyano acetal 180. The decisive intramolecular alkylation was realized by treatment of the cyano acetal 180 with sodium bis(trimethylsi-lyl)amide. Subsequent treatment of the alkylated cyano acetal 182 with acid (to 183) and base afforded the bicyclo[9.3.0]tetradecane 184. [Pg.109]

R can be aryl or saturated or unsaturated alkyl. Since the cyanohydrins1476 are easily formed from aldehydes (6-49) and the product is easily hydrolyzed to a ketone, this is a method for converting an aldehyde RCHO to a ketone RCOR 1477 (for other methods, see 0-97, 0-105, and 8-9).1478 In this procedure the normal mode of reaction of a carbonyl carbon is reversed. The C atom of an aldehyde molecule is normally electrophilic and is attacked by nucleophiles (Chapter 16), but by conversion to the protected cyanohydrin this carbon atom has been induced to perform as a nucleophile.1479 The German word umpolunglm is used to describe this kind of reversal (another example is found in 0-97). Since the ion 120 serves as a... [Pg.471]


See other pages where Unsaturated Cyanohydrins is mentioned: [Pg.51]    [Pg.13]    [Pg.729]    [Pg.553]    [Pg.553]    [Pg.193]    [Pg.193]    [Pg.553]    [Pg.310]    [Pg.51]    [Pg.13]    [Pg.729]    [Pg.553]    [Pg.553]    [Pg.193]    [Pg.193]    [Pg.553]    [Pg.310]    [Pg.402]    [Pg.376]    [Pg.144]    [Pg.553]    [Pg.1038]    [Pg.327]    [Pg.119]    [Pg.276]    [Pg.41]    [Pg.55]    [Pg.227]    [Pg.208]    [Pg.104]    [Pg.96]    [Pg.98]    [Pg.104]   


SEARCH



Cyanohydrine

Cyanohydrins

© 2024 chempedia.info