Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unsaturated aldehydes aldol reaction

J0rgensen has also reported a sequential Michael/Michael/aldol condensation for the three component coupling of malonitrile 111 and a,P-unsaturated aldehydes that involves two iminium ion catalysed Michael additions followed by an intramolecular aldol condensation (Scheme 43) [170]. Using diarylprolinol ether 55 (10 mol%) in a concentrated toluene solution of malonitrile 111 and 3 equivalents of a,P-unsaturated aldehyde the reaction products can be isolated in just 1 8 h (57-89% yield 97-99% ee). The atom efficiency of this three component reaction is remarkable and the ability to prepare these complex products under... [Pg.316]

All the steps of this reaction are reversible but the position of the equilibrium is significantly in favour of the aldol, which generally may be obtained when the reaction is carried out at room temperature or below, followed by extraction and careful distillation under reduced pressure. When the required product is the unsaturated aldehyde the reaction is carried out at a higher temperature, and dehydration of the aldol occurs readily (e.g. 2-ethylhex-2-enal, Expt 5.212). In the case of aldehydes with only one a-hydrogen atom, aldol formation occurs but the resulting / -hydroxyaldehyde cannot undergo the dehydration step. [Pg.800]

Conjugation of the newly formed double bond with the carbonyl group stabilizes the a p unsaturated aldehyde provides the driving force for the dehydration and controls Its regioselectivity Dehydration can be effected by heating the aldol with acid or base Normally if the a p unsaturated aldehyde is the desired product all that is done is to carry out the base catalyzed aldol addition reaction at elevated temperature Under these conditions once the aldol addition product is formed it rapidly loses water to form the a p unsaturated aldehyde... [Pg.772]

The addition of the a-carbon of an enolizable aldehyde or ketone 1 to the carbonyl group of a second aldehyde or ketone 2 is called the aldol reaction It is a versatile method for the formation of carbon-carbon bonds, and is frequently used in organic chemistry. The initial reaction product is a /3-hydroxy aldehyde (aldol) or /3-hydroxy ketone (ketol) 3. A subsequent dehydration step can follow, to yield an o ,/3-unsaturated carbonyl compound 4. In that case the entire process is also called aldol condensation. [Pg.4]

If the initially formed /3-hydroxy carbonyl compound 3 still has an a-hydrogen, a subsequent elimination of water can take place, leading to an o ,/3-unsaturated aldehyde or ketone 4. In some cases the dehydration occurs already under the aldol reaction conditions in general it can be carried out by heating in the presence of acid ... [Pg.5]

From a mixture of two different aldehydes, each with a-hydrogens, four different aldols can be formed—two aldols from reaction of molecules of the same aldehyde -I- two crossed aldol products not even considering possible stereoisomers (see below). By taking into account the unsaturated carbonyl compounds which could be formed by dehydration from the aldols, eight different reaction products might be obtained, thus indicating that the aldol reaction may have preparative limitations. [Pg.5]

Various competitive reactions can reduce the yield of the desired Michael-addition product. An important side-reaction is the 1,2-addition of the enolate to the C=0 double bond (see aldol reaction, Knoevenagel reaction), especially with a ,/3-unsaturated aldehydes, the 1,2-addition product may be formed preferentially, rather than the 1,4-addition product. Generally the 1,2-addition is a kinetically favored and reversible process. At higher temperatures, the thermodynamically favored 1,4-addition products are obtained. [Pg.202]

The jS-hydroxy aldehydes or ketones formed in aldol reactions can be easily dehydrated to yield a -unsaturated products, or conjugated enones. In fact, it s this loss of water that gives the condensation reaction its name, because water condenses out of the reaction when the enone product forms. [Pg.882]

Strategy In the aldol reaction, H2O is eliminated and a double bond is formed by removing hvo hydrogens from the acidic a position of one partner and the carbonyl oxygen from the second partner. The product is thus an a,/3-unsaturated aldehyde or ketone. [Pg.883]

The aldol reaction is a carbonyl condensation that occurs between two aldehyde or ketone molecules. Aldol reactions are reversible, leading first to a /3-hydroxy aldehyde or ketone and then to an cr,/6-unsaturated product. Mixed aldol condensations between two different aldehydes or ketones generally give a mixture of all four possible products. A mixed reaction can be successful, however, if one of the two partners is an unusually good donor (ethyl aceto-acetate, for instance) or if it can act only as an acceptor (formaldehyde and benzaldehyde, for instance). Intramolecular aldol condensations of 1,4- and 1,5-diketones are also successful and provide a good way to make five-and six-inembered rings. [Pg.904]

The product is a P-hydroxy aldehyde (called an aldol) or ketone, which in some cases is dehydrated during the course of the reaction. Even if the dehydration is not spontaneous, it can usually be done easily, since the new double bond is in conjugation with the C=0 bond so that this is a method of preparing a,P-unsaturated aldehydes and ketones as well as P-hydroxy aldehydes and ketones. The entire reaction is an equilibrium (including the dehydration step), and a,P-unsaturated and P-hydroxy aldehydes and ketones can be cleaved by treatment with OH (the retrograde aldol reaction). There is evidence that an SET mechanism can intervene when the substrate is an aromatic ketone. ... [Pg.1220]

In 1991, Kobayashi el al. prepared novel chiral S/N ligands for the tin-mediated aldol reaction of silyl enol ethers with aldehydes. As an example, the reaction of benzaldehyde afforded the expected syn aldol product as the major product with a good yield and an enantioselectivity of up to 92% ee (Scheme 10.26). Moreover, other aldehydes such as substituted benzaldehydes or aliphatic unsaturated aldehydes were converted into their corresponding aldol products with enantioselectivities of more than 90% ee. It was checked that the corresponding diamine ligands provided less active complexes for the same reactions. [Pg.314]

The general mechanistic features of the aldol addition and condensation reactions of aldehydes and ketones were discussed in Section 7.7 of Part A, where these general mechanisms can be reviewed. That mechanistic discussion pertains to reactions occurring in hydroxylic solvents and under thermodynamic control. These conditions are useful for the preparation of aldehyde dimers (aldols) and certain a,(3-unsaturated aldehydes and ketones. For example, the mixed condensation of aromatic aldehydes with aliphatic aldehydes and ketones is often done under these conditions. The conjugation in the (3-aryl enones provides a driving force for the elimination step. [Pg.64]

Another attractive domino approach starts with an aldol reaction of preformed enol ethers and carbonyl compounds as the first step. Rychnovsky and coworkers have found that unsaturated enol ethers such as 2-237 react with different aldehydes 2-238 in the presence of TiBr4. The process consists of an aldol and a Prins-type reaction to give 4-bromotetrahydropyrans 2-239 in good yields, and allows the formation of two new C-C-bonds, one ring and three new stereogenic centers (Scheme 2.56) [131]. In the reaction, only two diastereomers out of eight possible isomers were formed whereby the intermediate carbocation is quenched with a bromide. [Pg.83]

Nagao, Y., Hagiwara, Y., Kumagai, T., Ochiai, M., Inoue, T., Hashimoto, K., and Fujita, E. (1986). New C4-chiral l,2-thiazolidine-2-thiones Excellent chiral auxiliaries for highly diastereocontrolled aldol-type reactions of acetic acid and a,b-unsaturated aldehydes. J. Org. Chem. 51, 2391-2393. [Pg.353]

Several other chiral Lewis acids have also been reported to effect asymmetric aldol reactions. Kruger and Carreira59 reported a catalytic aldol addition of silyl dienolate to a range of aldehydes in the presence of a bisphosphanyl-Cu(II) fluoride complex generated in situ from (iS )-Tol-BINAP, Cu(OTf)2, and (Bu4N)Ph3SiF2. Aromatic, heteroaromatic, and a,/ -unsaturated aldehydes provided the aldol adducts with up to 95% ee and 98% yield (Scheme 3-33). [Pg.162]

This method can also be applied to silyl enol ethers of homologous unsaturated ketones as well as of unsaturated aldehydes or esters [85-87]. While unmodified unsaturated esters give only the corresponding aldehydes without cyclization under tandem hydroformylation/aldol reaction conditions, the corresponding silylated ester enolates smoothly cyclize in a tandem hy-droformylation/ Mukaiyama aldol reaction (Scheme 32) [85-87]. [Pg.95]

Scheme 32 Unsaturated aldehydes, ketones and esters in the hydroformylation/Mukayama aldol reaction... Scheme 32 Unsaturated aldehydes, ketones and esters in the hydroformylation/Mukayama aldol reaction...
Unlike the corresponding reaction of p-keto esters with a,p-unsaturated aldehydes, which produce Michael adducts, a-cyanoacetic esters undergo the aldol reaction forming a-cyanodienoic esters [17]. [Pg.262]

P-keto esters with a,p-unsaturated aldehydes liquidrliquid two-phase conditions [20] but, in contrast, under analogous conditions a-cyanoacetic esters produce aldol adducts with a,p-unsaturated aldehydes [20], Ethyl acetoacetate undergoes a catalysed Michael reaction addition with trans but-2-en-l,4-diones the products are generally insufficiently stable for isolation, but can be converted into furans [21 ]. [Pg.275]

Having used their catalytic systems with dienolates derived from unsaturated esters, Denmark performed aldol reactions with the dioxanone-derived dienol ether described above in the context of Carreira s and Campagne s vinylogous aldol reactions (Scheme 21). Here, exclusively, the y product was formed with the nucleophile attacking from the Re face. For all three aldehydes, very good yields (83-92%) and selectivities (74-89% ee) were observed with only 0.01-0.05 mol% of the catalyst. [Pg.63]

In two studies toward the total synthesis of natural products it could be shown that the a,jS-unsaturated esters derived from the vinylogous Mukaiyama aldol reactions can be further functionalized into advanced intermediates. The C1-C7 segment of oleandolide commences with the VMAR of aldehyde 68 derived from the Roche ester. The so-generated stereo-triad was protected as PMB ether and the ester 76 was reduced to the allylic alcohol. Sharpless asym-... [Pg.69]

On the other hand, the method of Mukaiyama can be succesfully applied to silyl enol ethers of acetic and propionic acid derivatives. For example, perfect stereochemical control is attained in the reaction of silyl enol ether of 5-ethyl propanethioate with several aldehydes including aromatic, aliphatic and a,j5-unsaturated aldehydes, with syir.anti ratios of 100 0 and an ee >98%, provided that a polar solvent, such as propionitrile, and the "slow addition procedure " are used. Thus, a typical experimental procedure is as follows [32e] to a solution of tin(II) triflate (0.08 mmol, 20 mol%) in propionitrile (1 ml) was added (5)-l-methyl-2-[(iV-l-naphthylamino)methyl]pyrrolidine (97b. 0.088 mmol) in propionitrile (1 ml). The mixture was cooled at -78 °C, then a mixture of silyl enol ether of 5-ethyl propanethioate (99, 0.44 mmol) and an aldehyde (0.4 mmol) was slowly added to this solution over a period of 3 h, and the mixture stirred for a further 2 h. After work-up the aldol adduct was isolated as the corresponding trimethylsilyl ether. Most probably the catalytic cycle is that shown in Scheme 9.30. [Pg.267]

Another advantage of this method is that no catalyst is needed for the addition reaction this means that the base-catalyzed polymerization of the electrophilic olefin (i.e., a,j8-unsaturated ketones, esters, etc.) is not normally a factor to contend with, as it is in the usual base-catalyzed reactions of the Michael typCi It also means that the carbonyl compound is not subject to aldol condensation which often is the predominant reaction in base-catalyzed reactions. An unsaturated aldehyde can be used only in a Michael addition reaction when the enamine method is employed. [Pg.42]

Diisobutylaluminium phenyl tellurolate, a highly air- and moisture-sensitive reagent, prepared by reaction of diisobutylaluminium hydride with diphenyl ditelluride, undergoes an in situ addition to a,jS-unsaturated carbonyl compounds, leading to the corresponding jS-phenyltelluroaluminium enolate. This intermediate is hydrolysed by aqueous HCl into jS-phenyltelluro compounds or smoothly affords an aldol reaction with aldehydes to give a-hydroxyalkyl-jS-phenyltellurocarbonyl compounds. [Pg.341]


See other pages where Unsaturated aldehydes aldol reaction is mentioned: [Pg.144]    [Pg.176]    [Pg.478]    [Pg.270]    [Pg.120]    [Pg.425]    [Pg.110]    [Pg.270]    [Pg.306]    [Pg.798]    [Pg.517]    [Pg.109]    [Pg.518]    [Pg.132]    [Pg.46]    [Pg.50]    [Pg.564]    [Pg.31]    [Pg.95]    [Pg.225]    [Pg.23]    [Pg.52]    [Pg.90]   
See also in sourсe #XX -- [ Pg.939 ]




SEARCH



Aldehydes aldol reactions

Aldehydes, unsaturated

Reactions unsaturated

Unsaturated aldehydes reaction

© 2024 chempedia.info