Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Unactivated methylene compounds

Acdve methylene compounds ranging in acidity from -keto esters, malonates and nitroalkanes pK = 9-13) to ketones (pATa = 16-20) can be used in the Mannich reaction. The lack of examples using simple unactivated esters (p/iTa = 25) appears to be due to their weaker acidity or to transamination and/or hydrolysis side reactions. Enolizable aldehydes have also been used in certain instances however, side products arising from subsequent aldol condensation of the resulting -amino aldehyde often occur. Best results are achieved with a-branched aldehydes, which produce Mannich bases without enolizable protons. [Pg.896]

Zinc oxide, an inexpensive and commercially available inorganic solid, can be utilized as an efficient catalyst in the Friedel-Crafts acylation of activated and unactivated aromatic compounds with acyl chlorides at room temperature for 5 to 120 min (Table 4.14). Acylation is claimed to occur exclusively at the para-position of the monosubstituted aromatic compounds. The catalyst can be recovered and reused, after washing with methylene chloride, for at least two further cycles, showing quite similar high yield (-90%) in the model benzoylation of anisole. Mechanistically, it seems that zinc chloride can be the true catalyst, generated in situ by the reaction of zinc oxide with hydrogen chloride. [Pg.111]

Under special conditions (addition of lithium amide, phase-transfer catalysis), compounds with apparently unactivated methylene groups (e.g., 5-methoxy-l-tetra-lone, Lombardo and Mander, 1980) or even with a methyl group at an arylcarbonyl group (Sugihara et al., 1987) undergo diazo transfer with arenesulfonyl azides. This is also the case for esters of 4-arylbut-3-enoic acid and related compounds (Davies et al., 1989, and references therein). [Pg.50]

On the other hand, the direct arylation of carbanionic species generated from substrates having relatively acidic hydrogens such as active methylene compounds and ketones can occur (mechanism B) [5,6]. Aryl halides are also capable of coupling directly with appropriately functionalized aromatic substrates and five-membered heteroaromatic compounds as formal carbon nucleophiles via cleavage of their unactivated C-H bonds [5,7-9]. The Fujiwra-Moritani reaction, which is the arylation of alkenes with arenes, is also useful for preparing arylalkenes without employing any halides (mechanism D) [10,11]. [Pg.56]

A cortisone synthesis using remote functionalization at an unactivated carbon centre has been achieved.97 Cortexolone (224) was converted into the 5a-H,3j3-OH derivative (formation of the bismethylenedioxy-compound followed by lithium-ammonia-ethanol reduction). Inversion98 of 3)8- to 3 -OH followed by esterification with m-iodobenzoic acid produced (225), which on irradiation in methylene chloride containing phenyl iodide dichloride gave the 9 a -chloro-derivative (not isolated). This was dehydrohalogenated and saponified by methanolic potash to yield (226) (75%) and thence, by further known steps, cortisone acetate. [Pg.307]

Palladium-based catalysts also bring about cyclopropanations in high-yield. With palladium acetate/CHjNj, styrene , unactivated terminal olefins strained olefins , 1,3-dienesan enamine , as well as a,3-unsaturated carbonyl compounds have been cyclopropanated (Table 1). Contrary to an earlier report, the reaction also works well with cyclohexene if the conditions are chosen appropriately it seems that the notniyst is rapidly deactivated in the presence of this olefin >. Trisubstituted a,p-unsaturated carbonyl compounds were found to be unreactive, and the same is true for the double bonds in diethyl fumarate, maleic anhydride, coumarin and 1,3-dimethyluracil. Whereas the latter two were totally unreactive, [3-1-2] cycloaddition of diazomethane gave pyrazolines in the former two cases. The last entry of Table 1 shows that an allyl alcohol function can still be cyclopropanated, but methylene insertion into the O—H bond is a competing process. [Pg.79]


See other pages where Unactivated methylene compounds is mentioned: [Pg.119]    [Pg.119]    [Pg.81]    [Pg.213]    [Pg.907]    [Pg.477]    [Pg.55]    [Pg.81]    [Pg.94]    [Pg.94]    [Pg.1099]    [Pg.64]    [Pg.511]   
See also in sourсe #XX -- [ Pg.109 , Pg.111 ]




SEARCH



Methylene compounds

© 2024 chempedia.info