Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ubiquinone electron transport

The ready reversibility of this reaction is essential to the role that qumones play in cellular respiration the process by which an organism uses molecular oxygen to convert Its food to carbon dioxide water and energy Electrons are not transferred directly from the substrate molecule to oxygen but instead are transferred by way of an electron trans port chain involving a succession of oxidation-reduction reactions A key component of this electron transport chain is the substance known as ubiquinone or coenzyme Q... [Pg.1013]

The decline in immune function may pardy depend on a deficiency of coenzyme Q, a group of closely related quinone compounds (ubiquinones) that participate in the mitochondrial electron transport chain (49). Concentrations of coenzyme Q (specifically coenzyme Q q) appear to decline with age in several organs, most notably the thymus. [Pg.431]

Complexes of the Mitochondrial Electron-Transport Chain Complex I (NADH Ubiquinone Oxidoreductase)... [Pg.126]

Ubiquinones (coenzymes Q) Q9 and Qi0 are essential cofactors (electron carriers) in the mitochondrial electron transport chain. They play a key role shuttling electrons from NADH and succinate dehydrogenases to the cytochrome b-c1 complex in the inner mitochondrial membrane. Ubiquinones are lipid-soluble compounds containing a redox active quinoid ring and a tail of 50 (Qio) or 45 (Q9) carbon atoms (Figure 29.10). The predominant ubiquinone in humans is Qio while in rodents it is Q9. Ubiquinones are especially abundant in the mitochondrial respiratory chain where their concentration is about 100 times higher than that of other electron carriers. Ubihydroquinone Q10 is also found in LDL where it supposedly exhibits the antioxidant activity (see Chapter 23). [Pg.877]

Deficiency of electron transport flavoprotein or of ETF ubiquinone reductase Biotinidase... [Pg.670]

The first of these new, electron transferring components was coenzyme Q (CoQ). Festenstein in R.A. Morton s laboratory in Liverpool had isolated crude preparations from intestinal mucosa in 1955. Purer material was obtained the next year from rat liver by Morton. The material was lipid soluble, widely distributed, and had the properties of a quinone and so was initially called ubiquinone. Its function was unclear. At the same time Crane, Hatefi and Lester in Wisconsin were trying to identify the substances in the electron transport chain acting between NADH and cytochrome b. Using lipid extractants they isolated a new quininoid coenzyme which showed redox changes in respiration. They called it coenzyme Q (CoQ). CoQ was later shown to be identical to ubiquinone. [Pg.89]

In summary, methanophenazine (10) is the first phenazine whose involvement in the electron transport of biologic systems could be established. The experiments indicate that its role in the energy metabolism of methanogens corresponds to that of ubiquinones in mitochondria and bacteria. [Pg.92]

Ubiquinone is readily reduced to ubiquinol, a process requiring two protons and two electrons similarly, ubiquinol is readily oxidized back to ubiquinone. This redox process is important in oxidative phosphorylation, in that it links hydrogen transfer to electron transfer. The cytochromes are haem-containing proteins (see Box 11.4). As we have seen, haem is an iron-porphyrin complex. Alternate oxidation-reduction of the iron between Fe + (reduced form) and Fe + (oxidized form) in the various cytochromes is responsible for the latter part of the electron transport chain. The individual cytochromes vary structurally, and their classification... [Pg.578]

At the cellular level, rotenone inhibits cellular respiration by blocking electron transport between flavoprotein and ubiquinone. It also inhibits spindle microtubule assembly. ... [Pg.621]

Oxidizible substrates from glycolysis, fatty acid or protein catabolism enter the mitochondrion in the form of acetyl-CoA, or as other intermediaries of the Krebs cycle, which resides within the mitochondrial matrix. Reducing equivalents in the form of NADH and FADH pass electrons to complex I (NADH-ubiquinone oxidore-ductase) or complex II (succinate dehydrogenase) of the electron transport chain, respectively. Electrons pass from complex I and II to complex III (ubiquinol-cyto-chrome c oxidoreductase) and then to complex IV (cytochrome c oxidase) which accumulates four electrons and then tetravalently reduces O2 to water. Protons are pumped into the inner membrane space at complexes I, II and IV and then diffuse down their concentration gradient through complex V (FoFi-ATPase), where their potential energy is captured in the form of ATP. In this way, ATP formation is coupled to electron transport and the formation of water, a process termed oxidative phosphorylation (OXPHOS). [Pg.357]

Atovaquone is a hydroxy-1,4-naphthoquinone, an analog of ubiquinone, with antipneumocystic activity. Since 2000 atovaquone is available as a fixed dose preparation (Malarone) with proguanil for the oral treatment of falciperum malaria. Its activity probably is based on a selective inhibiton of mitochondrial electron transport with consequent inhibition of pyrimidin synthesis. Malarone should not be used to treat severe malaria, when an injectable drug is needed. [Pg.429]

This may be due to the interference with the mitochondrial electron transport chain. Thus, cadmium binds to complex III at the Q0 site between semi-ubiquinone and heme b566. This stops delivery of electrons to the heme and allows accumulation of semi-ubiquinone, which in turn transfers the electrons to oxygen and produces superoxide. [Pg.386]

In 1955, R. A. Morton and associates in Liverpool announced the isolation of a quinone which they named ubiquinone for its ubiquitous occurrence.484 485 It was characterized as a derivative of benzoquinone attached to an unsaturated polyprenyl (isoprenoid) side chain (Fig. 15-24). In fact, there is a family of ubiquinones that from bacteria typically contains six prenyl units in its side chain, while most ubiquinones from mammalian mitochondria contain ten. Ubiquinone was also isolated by F. L. Crane and associates using isooctane extraction of mitochondria. These workers proposed that the new quinone, which they called coenzyme Q, might participate in electron transport. As is described in Chapter 18, this function has been fully established. Both the name ubiquinone and the abbreviation Q are in general use. A subscript indicates the number of prenyl units, e.g., Q10. Ubiquinones can be reversibly reduced to the hydro-quinone forms (Fig. 15-24), providing a basis for their function in electron transport within mitochondria and chloroplasts.486 490... [Pg.818]

Ubiquinones function as electron transport agents within the inner mitochondrial membranes496 and also within the reaction centers of the photosynthetic membranes of bacteria (Eq. 23-32).484/488/494 The plasto-quinones also function in electron transport within... [Pg.819]

Both the presence of methyl substituents in the tocopherols and their chromanol structures increase the ability of these compounds to form relatively stable radicals.498 499 This ability is doubtless probably important also in the function of ubiquinones and plastoquinones. Ubiquinone radicals (semiquinones) are probably intermediates in mitochondrial electron transport (Chapter 18) and radicals amounting to as much as 40% of the total ubiquinone in the NADH-ubiquinone reductase of heart mito-... [Pg.819]

During the 1940s, when it had become clear that formation of ATP in mitochondria was coupled to electron transport, the first attempts to pick the system apart and understand the molecular mechanism began. This effort led to the identification and at least partial characterization of several flavoproteins, iron-sulfur centers, ubiquinones, and cytochromes, most of which have been described in Chapters 15 and 16. It also led to the picture of mitochondrial electron transport shown in Fig. 10-5 and which has been drawn in a modem form in Fig. 18-5. [Pg.1019]

Because of the difficulty of isolating the electron transport chain from the rest of the mitochondrion, it is easiest to measure ratios of components (Table 18-3). Cytochromes a, a3, b, cv and c vary from a 1 1 to a 3 1 ratio while flavins, ubiquinone, and nonheme iron occur in relatively larger amounts. The much larger... [Pg.1019]

Figure 18-5 A current concept of the electron transport chain of mitochondria. Complexes I, III, and IV pass electrons from NADH or NADPH to 02, one NADH or two electrons reducing one O to HzO. This electron transport is coupled to the transfer of about 12 H+ from the mitochondrial matrix to the intermembrane space. These protons flow back into the matrix through ATP synthase (V), four H+ driving the synthesis of one ATP. Succinate, fatty acyl-CoA molecules, and other substrates are oxidized via complex II and similar complexes that reduce ubiquinone Q, the reduced form QH2 carrying electrons to complex III. In some tissues of some organisms, glycerol phosphate is dehydrogenated by a complex that is accessible from the intermembrane space. Figure 18-5 A current concept of the electron transport chain of mitochondria. Complexes I, III, and IV pass electrons from NADH or NADPH to 02, one NADH or two electrons reducing one O to HzO. This electron transport is coupled to the transfer of about 12 H+ from the mitochondrial matrix to the intermembrane space. These protons flow back into the matrix through ATP synthase (V), four H+ driving the synthesis of one ATP. Succinate, fatty acyl-CoA molecules, and other substrates are oxidized via complex II and similar complexes that reduce ubiquinone Q, the reduced form QH2 carrying electrons to complex III. In some tissues of some organisms, glycerol phosphate is dehydrogenated by a complex that is accessible from the intermembrane space.
These complexes are usually named as follows I, NADH-ubiquinone oxidoreductase II, succinate-ubiquinone oxidoreductase III, ubiquinol-cytochrome c oxidoreductase IV, cytochrome c oxidase. The designation complex V is sometimes applied to ATP synthase (Fig. 18-14). Chemical analysis of the electron transport complexes verified the probable location of some components in the intact chain. For example, a high iron content was found in both complexes I and II and copper in complex IV. [Pg.1021]

The lipid-soluble ubiquinone (Q) is present in both bacterial and mitochondrial membranes in relatively large amounts compared to other electron carriers (Table 18-2). It seems to be located at a point of convergence of the NADH, succinate, glycerol phosphate, and choline branches of the electron transport chain. Ubiquinone plays a role somewhat like that of NADH, which carries electrons between dehydrogenases in the cytoplasm and from soluble dehydrogenases in the aqueous mitochondrial matrix to flavoproteins embedded in the membrane. Ubiquinone transfers electrons plus protons between proteins within the... [Pg.1021]


See other pages where Ubiquinone electron transport is mentioned: [Pg.152]    [Pg.411]    [Pg.126]    [Pg.141]    [Pg.212]    [Pg.569]    [Pg.161]    [Pg.389]    [Pg.267]    [Pg.128]    [Pg.140]    [Pg.142]    [Pg.357]    [Pg.21]    [Pg.221]    [Pg.43]    [Pg.429]    [Pg.435]    [Pg.101]    [Pg.115]    [Pg.120]    [Pg.125]    [Pg.179]    [Pg.788]    [Pg.819]    [Pg.953]    [Pg.1023]   
See also in sourсe #XX -- [ Pg.30 ]




SEARCH



Electron transporter

Electron transporting

Ubiquinone

© 2024 chempedia.info