Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tyrosine 4-monooxygenase

Figure 11.17 Supplementation of diet with y-linolenic acid to overcome a deficiency of A desaturase Supplementation of a diet with DOPA to overcome a deficiency of monooxygenase in Parkinson s disease. A desaturase is a rate-limiting enzyme in the synthesis of arachidonic acid. Supplementation of diet with y-linolenic acid bypasses this enzyme. Damage to neurones in the brain that use dopamine as a neurotransmitter causes a deficiency of rate-limiting a supplement - enzyme, tyrosine monooxygenase, which is bypassed by a supplement, DOPA (dihydroxyphenylalanine). DOPA (usually, described as L-DOPA) is considered by the medical profession as a drug but, in reality, it is a dietary supplement. Figure 11.17 Supplementation of diet with y-linolenic acid to overcome a deficiency of A desaturase Supplementation of a diet with DOPA to overcome a deficiency of monooxygenase in Parkinson s disease. A desaturase is a rate-limiting enzyme in the synthesis of arachidonic acid. Supplementation of diet with y-linolenic acid bypasses this enzyme. Damage to neurones in the brain that use dopamine as a neurotransmitter causes a deficiency of rate-limiting a supplement - enzyme, tyrosine monooxygenase, which is bypassed by a supplement, DOPA (dihydroxyphenylalanine). DOPA (usually, described as L-DOPA) is considered by the medical profession as a drug but, in reality, it is a dietary supplement.
These copper ion-dependent enzymes [EC 1.10.3.1] (also referred to as diphenol oxidases, O-diphenolase, phe-nolases, polyphenol oxidases, or tyrosinases) catalyze the reaction of two catechol molecules with dioxygen to produce two 1,2-benzoquinone and two water. A variety of substituted catechols can act as substrates. Many of the enzymes listed under this classification also catalyze a monophenol monooxygenase activity [/.c., EC 1.14.18.1]. See also Monophenol Monooxygenase Tyrosine Monooxygenase... [Pg.121]

One of the best characterized physiological functions of (6R)-tetrahydrobio-pterin (BH4, 43) is the action as a cofactor for aromatic amino acid hydroxylases (Scheme 28). There are three types of aromatic amino acid hydroxylases phenylalanine hydroxylase [PAH phenylalanine monooxygenase (EC 1.14.16.1)], tyrosine hydroxylase [TH tyrosine monooxygenase (EC 1.14.16.2)] and tryptophan hydroxylase [TPH tryptophan monooxygenase (EC 1.14.16.4)]. PAH converts L-phenylalanine (125) to L-tyrosine (126), a reaction important for the catabolism of excess phenylalanine taken from the diet. TH and TPH catalyze the first step in the biosyntheses of catecholamines and serotonin, respectively. Catecholamines, i.e., dopamine, noradrenaline and adrenaline, and serotonin, are important neurotransmitters and hormones. TH hydroxylates L-tyrosine (126) to form l-DOPA (3,4-dihydroxyphenylalanine, 127), and TPH catalyzes the hydroxylation of L-tryptophan (128) to 5-hydroxytryptophan (129). The hydroxylated products, 127 and 129, are decarboxylated by the action of aromatic amino acid decarboxylase to dopamine (130) and serotonin (131), respectively. [Pg.158]

Tyrosinase (see Copper Proteins with Dinuclear Active Sites), a copper metalloenzyme with a very broad phylogenetic distribution, is responsible for the browning of fruits and mushrooms.Tyrosinase is a bifimctional phenol oxidase that is able to both hydroxylate monophenols like tyrosine (monooxygenase reaction, (equations)) and snbseqnently oxidize the diphenol product to the corresponding quinone (oxidase reaction, (equation 6)) at a single Type 3 binuclear copper active site. [Pg.5498]

Tyrosine monooxygenase uses biopterin as a cofactor. Biopterin is made in the body and is not a vitamin. Its structure resembles that of folic acid. Dopa decarboxylase is a vitamin B -requiring enzyme. Dopamine hydroxylase is a copper metalloenzyme. The active form of the enzyme contains copper in the reduced state (cuprous, Cu+). With each catalytic event, the copper is oxidized to the cupric state (Cu ). The enzyme uses ascorbic acid as a cofactor for converting the cupric copper back to cuprous copper. Thus, each catalytic event also results in the conversion of ascorbic acid to semidehydroascorbate. The semidehydroascorbate, perhaps by disproportionation, is converted to ascorbate and dehydroascorbate. The catalytic cycle of dopamine hydroxylase is shown in Figure 9,86. Dopamine hydroxylase, as well as the stored catecholamines, are located in special vesicles... [Pg.623]

Tyrosine monooxygenase, 4-hydroxy-phenylpyruvate dioxygenase, homogentisate prenylase (D 22, D 22.4) Further enzymes of plastid quinone biosynthesis Plastid quinones,... [Pg.41]

Because LCEC had its initial impact in neurochemical analysis, it is not, surprising that many of the early enzyme-linked electrochemical methods are of neurologically important enzymes. Many of the enzymes involved in catecholamine metabolism have been determined by electrochemical means. Phenylalanine hydroxylase activity has been determined by el trochemicaUy monitoring the conversion of tetrahydro-biopterin to dihydrobiopterin Another monooxygenase, tyrosine hydroxylase, has been determined by detecting the DOPA produced by the enzymatic reaction Formation of DOPA has also been monitored electrochemically to determine the activity of L-aromatic amino acid decarboxylase Other enzymes involved in catecholamine metabolism which have been determined electrochemically include dopamine-p-hydroxylase phenylethanolamine-N-methyltransferase and catechol-O-methyltransferase . Electrochemical detection of DOPA has also been used to determine the activity of y-glutamyltranspeptidase The cytochrome P-450 enzyme system has been studied by observing the conversion of benzene to phenol and subsequently to hydroquinone and catechol... [Pg.29]

In microsomes from Sinapis alba L.,33,34 Tropaeolum majus L.,35,36 and Carica papaya L.,37 the aromatic amino acids (tyrosine and phenylalanine) have been shown to be converted to the corresponding oximes by cytochrome P450-dependent monooxygenases. The conversion of tyrosine to the corresponding oxime in microsomes from S. alba was approximately 1000 fold lower than in microsomes from the cyanogenic sorghum.33 This made a biochemical approach for the isolation... [Pg.227]

The first step is catalysed by the tetrahydrobiopterin-dependent enzyme tyrosine hydroxylase (tyrosine 3-monooxygenase), which is regulated by end-product feedback is the rate controlling step in this pathway. A second hydroxylation reaction, that of dopamine to noradrenaline (norepinephrine) (dopamine [3 oxygenase) requires ascorbate (vitamin C). The final reaction is the conversion of noradrenaline (norepinephrine) to adrenaline (epinephrine). This is a methylation step catalysed by phenylethanolamine-jV-methyl transferase (PNMT) in which S-adenosylmethionine (SAM) acts as the methyl group donor. Contrast this with catechol-O-methyl transferase (COMT) which takes part in catecholamine degradation (Section 4.6). [Pg.91]

Francisco, W.A., Blackburn, N.J. and Klinman, J.P. (2003). Oxygen and hydrogen isotope effects in an active site tyrosine to phenylalanine mutant of peptidylglycine alpha-hydroxylating monooxygenase mechanistic implications. Biochemistry 42, 1813-1819... [Pg.76]

Albinism <3 Melanin synthesis from tyrosine Tyrosine 3-monooxygenase (tyrosinase) Lack of pigmentation white hair, pink skin... [Pg.677]

Tire tetrahydrobiopterin formed in this reaction is similar in structure to a reduced flavin. The mechanism of its interaction with 02 could reasonably be the same as that of 4-hydroxybenzoate hydroxylase. However, phenylalanine hydroxylase, which catalyzes the formation of tyrosine (Eq. 18-45), a dimer of 451-residue subunits, contains one Fe per subunit,113 313i whereas flavin monooxygenases are devoid of iron. Tyrosine hydroxylase416 193 and tryptophan hydroxylase420 have very similar properties. All three enzymes contain regulatory, catalytic, and tetramerization domains as well as a common Fe-binding motif in their active sites.413 421 4213... [Pg.1061]

Table 22. Relative activities of wild-type and mutant tyrosinases from A. oryzae expressed in S. cerevisiae for the monooxygenase with L-tyrosine, and oxidase activity... Table 22. Relative activities of wild-type and mutant tyrosinases from A. oryzae expressed in S. cerevisiae for the monooxygenase with L-tyrosine, and oxidase activity...
Monooxygenase with L-tyrosine Oxidase with L-DOPA... [Pg.243]


See other pages where Tyrosine 4-monooxygenase is mentioned: [Pg.729]    [Pg.229]    [Pg.624]    [Pg.729]    [Pg.229]    [Pg.624]    [Pg.324]    [Pg.515]    [Pg.761]    [Pg.84]    [Pg.343]    [Pg.104]    [Pg.353]    [Pg.422]    [Pg.360]    [Pg.590]    [Pg.139]    [Pg.157]    [Pg.70]    [Pg.70]    [Pg.70]    [Pg.70]    [Pg.70]    [Pg.70]    [Pg.70]    [Pg.71]    [Pg.637]    [Pg.799]    [Pg.590]    [Pg.324]    [Pg.597]    [Pg.515]    [Pg.348]    [Pg.525]    [Pg.526]    [Pg.451]   
See also in sourсe #XX -- [ Pg.623 ]

See also in sourсe #XX -- [ Pg.406 ]




SEARCH



Tyrosine 3-monooxygenase, function

© 2024 chempedia.info