Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tyrosine decarboxylation

Wolken, W. A. M., Lucas, P. M., Lonvaud-Funel, A., Lolkema, J. S. (2006). The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis. Journal of Bacteriology, 188, 2198-2206. http //dx.doi.org/10.1128/JB.188.6.2198-2206.2006. [Pg.310]

Obviously, the elucidation of the enzymic mechanism required the preliminary purification of at least one of the transaminases. An 85-90% pure glutamic aspartic transaminase was obtained and found to contain 2 moles of pyridoxal phosphate per mole of enzyme. But pyridoxal is not the active coenzyme. Gunsalus, Bellamy, and Umbreit discovered that the addition of pyridoxal to a culture medium of a strain of Streptococcus faecalis grown on a pyri-doxal-deficient medium has little effect on the ability of the bacteria to decarboxylate tyrosine. When the culture was supplemented with pyridoxal and adenosine triphosphate, or with phosphorylated derivatives of pyridoxal, the tyrosine decarboxylation activity was greatly enhanced. It was later established that... [Pg.300]

Fernandez, M., Linares, D. M., Alvarez, M. A. (2004). Sequencing of the tyrosine decarboxylase cluster of Lactococcus lactis IPLA 655 and the development of a PCR method for detecting tyrosine decarboxylating lactic acid bacteria. Journal of Food Protection, 67, 2521-2529. [Pg.301]

Lucas, P.M., Blancato, V.S., Qaisse, O., et al. (2007) Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus. Microbiology 153, 2221-2230. [Pg.246]

FIGURE 27 5 Tyrosine is the biosynthetic precursor to a number of neurotransmit ters Each transformation IS enzyme catalyzed Hydroxy lation of the aromatic ring of tyrosine converts it to 3 4 dihyd roxyphenylalanine (l dopa) decarboxylation of which gives dopamine Hy droxylation of the benzylic carbon of dopamine con verts It to norepinephrine (noradrenaline) and methy lation of the ammo group of norepinephrine yields epi nephrine (adrenaline)... [Pg.1126]

The chemistry of the brain and central nervous system is affected by a group of substances called neurotransmitters, substances that carry messages across a synapse from one neuron to another Several of these neurotransmitters arise from l tyrosine by structural modification and decarboxylation as outlined m Figure 27 5... [Pg.1126]

Amino acid-derived hormones include the catecholamines, epinephrine and norepinephrine (qv), and the thyroid hormones, thyroxine and triiodothyronine (see Thyroid AND ANTITHYROID PREPARATIONS). Catecholamines are synthesized from the amino acid tyrosine by a series of enzymatic reactions that include hydroxylations, decarboxylations, and methylations. Thyroid hormones also are derived from tyrosine iodination of the tyrosine residues on a large protein backbone results in the production of active hormone. [Pg.171]

Certain amino acids and their derivatives, although not found in proteins, nonetheless are biochemically important. A few of the more notable examples are shown in Figure 4.5. y-Aminobutyric acid, or GABA, is produced by the decarboxylation of glutamic acid and is a potent neurotransmitter. Histamine, which is synthesized by decarboxylation of histidine, and serotonin, which is derived from tryptophan, similarly function as neurotransmitters and regulators. /3-Alanine is found in nature in the peptides carnosine and anserine and is a component of pantothenic acid (a vitamin), which is a part of coenzyme A. Epinephrine (also known as adrenaline), derived from tyrosine, is an important hormone. Penicillamine is a constituent of the penicillin antibiotics. Ornithine, betaine, homocysteine, and homoserine are important metabolic intermediates. Citrulline is the immediate precursor of arginine. [Pg.87]

Trace Amines. Figure 1 The main routes of trace amine metabolism. The trace amines (3-phenylethylamine (PEA), p-tyramine (TYR), octopamine (OCT) and tryptamine (TRP), highlighted by white shading, are each generated from their respective precursor amino acids by decarboxylation. They are rapidly metabolized by monoamine oxidase (MAO) to the pharmacologically inactive carboxylic acids. To a limited extent trace amines are also A/-methylated to the corresponding secondary amines which are believed to be pharmacologically active. Abbreviations AADC, aromatic amino acid decarboxylase DBH, dopamine b-hydroxylase NMT, nonspecific A/-methyltransferase PNMT, phenylethanolamine A/-methyltransferase TH, tyrosine hydroxylase. [Pg.1219]

Decarboxylation of histidine to histamine is catalyzed by a broad-specificity aromatic L-amino acid decarboxylase that also catalyzes the decarboxylation of dopa, 5-hy-droxytryptophan, phenylalanine, tyrosine, and tryptophan. a-Methyl amino acids, which inhibit decarboxylase activity, find appfication as antihypertensive agents. Histidine compounds present in the human body include ergothioneine, carnosine, and dietary anserine (Figure 31-2). Urinary levels of 3-methylhistidine are unusually low in patients with Wilson s disease. [Pg.265]

Following hydroxylation of tryptophan to 5-hydroxy-tryptophan by hver tyrosine hydroxylase, subsequent decarboxylation forms serotonin (5-hydroxytrypta-... [Pg.266]

The conversion of tyrosine to epinephrine requires four sequential steps (1) ring hydroxylation (2) decarboxylation (3) side chain hydroxylation to form norepinephrine and (4) N-methylation to form epinephrine. The biosynthetic pathway and the enzymes involved are illustrated in Figure 42-10. [Pg.446]

By contrast, the cytoplasmic decarboxylation of dopa to dopamine by the enzyme dopa decarboxylase is about 100 times more rapid (Am 4x 10 " M) than its synthesis and indeed it is difficult to detect endogenous dopa in the CNS. This enzyme, which requires pyridoxal phosphate (vitamin B6) as co-factor, can decarboxylate other amino acids (e.g. tryptophan and tyrosine) and in view of its low substrate specificity is known as a general L-aromatic amino-acid decarboxylase. [Pg.141]

While a number of drugs, e.g. a-methyl dopa, inhibit the enzyme they have little effect on the levels of brain DA and NA, compared with inhibition of tyrosine hydroxylase and they also affect the decarboxylation of other amino acids. Some compounds, e.g. a-methyl dopa hydrazine (carbidopa) and benserazide, which do not easily enter the CNS have a useful role when given in conjunction with levodopa in the treatment of Parkinsonism (see Chapter 15) since the dopa is then preserved peripherally and so more enters the brain. [Pg.141]

The pathway for synthesis of the catecholamines dopamine, noradrenaline and adrenaline, illustrated in Fig. 8.5, was first proposed by Hermann Blaschko in 1939 but was not confirmed until 30 years later. The amino acid /-tyrosine is the primary substrate for this pathway and its hydroxylation, by tyrosine hydroxylase (TH), to /-dihydroxyphenylalanine (/-DOPA) is followed by decarboxylation to form dopamine. These two steps take place in the cytoplasm of catecholaminereleasing neurons. Dopamine is then transported into the storage vesicles where the vesicle-bound enzyme, dopamine-p-hydroxylase (DpH), converts it to noradrenaline (see also Fig. 8.4). It is possible that /-phenylalanine can act as an alternative substrate for the pathway, being converted first to m-tyrosine and then to /-DOPA. TH can bring about both these reactions but the extent to which this happens in vivo is uncertain. In all catecholamine-releasing neurons, transmitter synthesis in the terminals greatly exceeds that in the cell bodies or axons and so it can be inferred... [Pg.167]

Figure 13.7 Synthesis and structure of the trace amines phenylethylamine, /)-tyramine and tryptamine. These are all formed by decarboxylation rather than hydroxylation of the precursors of the established monoamine neurotransmitters, dopamine and 5-HT. (1) Decarboxylation by aromatic L-amino acid decarboxylase (2) phenylaline hydroxylase (3) tyrosine hydroxylase (4) tryptophan hydroxylase... Figure 13.7 Synthesis and structure of the trace amines phenylethylamine, /)-tyramine and tryptamine. These are all formed by decarboxylation rather than hydroxylation of the precursors of the established monoamine neurotransmitters, dopamine and 5-HT. (1) Decarboxylation by aromatic L-amino acid decarboxylase (2) phenylaline hydroxylase (3) tyrosine hydroxylase (4) tryptophan hydroxylase...
Tyramine is produced by decarboxylation of tyrosine and is present in the CNS in higher (threefold) concentrations than m-tyramine, the hydroxylated derivative of phenylethylamine. In the periphery / -tyramine is easily hydroxylated to octopamine, which has some direct effects on ai adrenoceptors, unlike tyramine which functions by releasing NA. When tested on central neurons tyramine always produces the same effects as NA but they are slower and less marked, implying an indirect action. By contrast octopamine often produces the opposite effect to NA and it is probable that octopamine may have a functional role in the invertebrate CNS where it is found in higher concentrations (5pg/g) than in the mammalian brain (0.5ng/g). Neither tyramine nor octopamine have distinct behavioural effects, unlike phenylethylamine,... [Pg.279]

Biogenic amines are decarboxylated derivatives of tyrosine and tryptophan that are found in animals from simple invertebrates to mammals. These compounds are found in neural tissue, where they function as neurotransmitters, and in non-neural tissues, where they have a variety of functions. The enzymes involved in biogenic amine synthesis and many receptors for these compounds have been isolated from both invertebrate and vertebrate sources. In all cases, the individual proteins that effect biogenic amine metabolism and function show striking similarity between species, indicating that these are ancient and well-conserved pathways. [Pg.56]

Decarboxylase Decarboxylation of amino adds and simple phenolic adds, primarily p-hydroxylated L-dopa, tyrosine... [Pg.513]

Dopamine synthesis in dopaminergic terminals (Fig. 46-3) requires tyrosine hydroxylase (TH) which, in the presence of iron and tetrahydropteridine, oxidizes tyrosine to 3,4-dihydroxyphenylalanine (levodopa.l-DOPA). Levodopa is decarboxylated to dopamine by aromatic amino acid decarboxylase (AADC), an enzyme which requires pyri-doxyl phosphate as a coenzyme (see also in Ch. 12). [Pg.765]

The hydrolysis rate is measured manometrically by decarboxylating the L-tyrosine produced. The product P competes for the enzyme, thus inhibiting the hydrolysis reaction ... [Pg.224]

Vitamin Ba (pyridoxine, pyridoxal, pyridoxamine) like nicotinic acid is a pyridine derivative. Its phosphorylated form is the coenzyme in enzymes that decarboxylate amino acids, e.g., tyrosine, arginine, glycine, glutamic acid, and dihydroxyphenylalanine. Vitamin B participates as coenzyme in various transaminations. It also functions in the conversion of tryptophan to nicotinic acid and amide. It is generally concerned with protein metabolism, e.g., the vitamin B8 requirement is increased in rats during increased protein intake. Vitamin B6 is also involved in the formation of unsaturated fatty acids. [Pg.212]

Oxidative polymerization of phenol derivatives is also important pathway in vivo, and one example is the formation of melanin from tyrosine catalyzed by the Cu enzyme, tyrosinase. The pathway from tyrosine to melanin is described by Raper (7) and Mason (8) as Scheme 8 the oxygenation of tyrosine to 4-(3,4-dihydro-xyphenyl)-L-alanin (dopa), its subsequent oxidation to dopaqui-none, its oxidative cyclization to dopachrome and succeeding decarboxylation to 5,6-dihydroxyindole, and the oxidative coupling of the products leads to the melanin polymer. The oxidation of dopa to melanin was attempted here by using Cu as the catalyst. [Pg.158]

Phenylglycines are important components of the vancomycin/teicoplanin antibiotics, and the conforma-tionally restricted amino acids contribute to the unique architecture and biological function of these clinically important NRPs. 4-Hydroxyphenylglycine is produced from L-tyrosine in a pathway that involves three enzymes. In the key step, a nonheme iron oxidase catalyzes the oxidative decarboxylation of the a-keto acid derivative of L-tyrosine resulting in loss of carbon dioxide and generation of the phenylglycine carbon framework. [Pg.646]

False neurotransmitters are amines which are similar enough in structure to normal amine neurotransmitters that they bind to receptors but are much less active or totally inactive (i.e. they are antagonists). One such false neurotransmitter is octopamine, which is formed from tyrosine by decarboxylation followed by side-chain hydroxylation. [Pg.221]

Some rather important indole derivatives influence our everyday lives. One of the most common ones is tryptophan, an indole-containing amino acid found in proteins (see Section 13.1). Only three of the protein amino acids are aromatic, the other two, phenylalanine and tyrosine being simple benzene systems (see Section 13.1). None of these aromatic amino acids is synthesized by animals and they must be obtained in the diet. Despite this, tryptophan is surprisingly central to animal metabolism. It is modified in the body by decarboxylation (see Box 15.3) and then hydroxylation to 5-hydroxytryptamine (5-HT, serotonin), which acts as a neurotransmitter in the central nervous system. [Pg.446]

Dopamine is the decarboxylation product of DOPA, dihydroxyphenylalanine, and is formed in a reaction catalysed by DOPA decarboxylase. This enzyme is sometimes referred to as aromatic amino acid decarboxylase, since it is relatively non-specific in its action and can catalyse decarboxylation of other aromatic amino acids, e.g. tryptophan and histidine. DOPA is itself derived by aromatic hydroxylation of tyrosine, using tetrahydrobiopterin (a pteridine derivative see Section 11.9.2) as cofactor. [Pg.602]

The neurotransmitter 5-hydroxytryptamine (5-HT, serotonin) is formed from tryptophan by hydroxylation then decarboxylation, paralleling the tyrosine — dopamine pathway. The non-specific enzyme aromatic amino acid decarboxylase again catalyses the decarboxylation. [Pg.602]


See other pages where Tyrosine decarboxylation is mentioned: [Pg.128]    [Pg.128]    [Pg.308]    [Pg.662]    [Pg.19]    [Pg.788]    [Pg.1170]    [Pg.277]    [Pg.236]    [Pg.515]    [Pg.88]    [Pg.85]    [Pg.227]    [Pg.94]    [Pg.2]    [Pg.29]    [Pg.829]    [Pg.4]    [Pg.165]   
See also in sourсe #XX -- [ Pg.30 ]

See also in sourсe #XX -- [ Pg.280 , Pg.282 ]

See also in sourсe #XX -- [ Pg.382 ]




SEARCH



Tyrosine decarboxylated

© 2024 chempedia.info