Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Turbulent flow, mass transfer/transport

Hydraulic design aims at the realization of an intensive heat and mass transfer. For two-phase gas-liquid or gas-solid systems, the choice is between different regimes, such as dispersed bubbly flow, slug flow, churn-turbulent flow, dense-phase transport, dilute-phase transport, etc. [Pg.47]

Eddy diffusion as a transport mechanism dominates turbulent flow at a planar electrode ia a duct. Close to the electrode, however, transport is by diffusion across a laminar sublayer. Because this sublayer is much thinner than the layer under laminar flow, higher mass-transfer rates under turbulent conditions result. Assuming an essentially constant reactant concentration, the limiting current under turbulent flow is expected to be iadependent of distance ia the direction of electrolyte flow. [Pg.88]

Computational fluid dynamics (CFD) is the numerical analysis of systems involving transport processes and solution by computer simulation. An early application of CFD (FLUENT) to predict flow within cooling crystallizers was made by Brown and Boysan (1987). Elementary equations that describe the conservation of mass, momentum and energy for fluid flow or heat transfer are solved for a number of sub regions of the flow field (Versteeg and Malalase-kera, 1995). Various commercial concerns provide ready-to-use CFD codes to perform this task and usually offer a choice of solution methods, model equations (for example turbulence models of turbulent flow) and visualization tools, as reviewed by Zauner (1999) below. [Pg.47]

When two or more phases are present, it is rarely possible to design a reactor on a strictly first-principles basis. Rather than starting with the mass, energy, and momentum transport equations, as was done for the laminar flow systems in Chapter 8, we tend to use simplified flow models with empirical correlations for mass transfer coefficients and interfacial areas. The approach is conceptually similar to that used for friction factors and heat transfer coefficients in turbulent flow systems. It usually provides an adequate basis for design and scaleup, although extra care must be taken that the correlations are appropriate. [Pg.381]

Mass and heat transfer to the walls in turbulent flows is a complex mixture of molecular transport and transport by turbulent eddies. The generally assumed analogy between mass and heat transfer by assuming Sh = Nu, is not valid for turbulent flows [26]. Simulations and measurements have shown that there is a laminar film close to the surface where most of the mass transfer resistance for high Sc liquids is located. This fUm is located below y+ = 1 and for low Sc fluids, and for heat transfer the whole boundary layer is important [27]. [Pg.346]

The parameter p (= 7(5 ) in gas-liquid sy.stems plays the same role as V/Aex in catalytic reactions. This parameter amounts to 10-40 for a gas and liquid in film contact, and increases to lO -lO" for gas bubbles dispersed in a liquid. If the Hatta number (see section 5.4.3) is low (below I) this indicates a slow reaction, and high values of p (e.g. bubble columns) should be chosen. For instantaneous reactions Ha > 100, enhancement factor E = 10-50) a low p should be selected with a high degree of gas-phase turbulence. The sulphonation of aromatics with gaseous SO3 is an instantaneous reaction and is controlled by gas-phase mass transfer. In commercial thin-film sulphonators, the liquid reactant flows down as a thin film (low p) in contact with a highly turbulent gas stream (high ka). A thin-film reactor was chosen instead of a liquid droplet system due to the desire to remove heat generated in the liquid phase as a result of the exothermic reaction. Similar considerations are valid for liquid-liquid systems. Sometimes, practical considerations prevail over the decisions dictated from a transport-reaction analysis. Corrosive liquids should always be in the dispersed phase to reduce contact with the reactor walls. Hazardous liquids are usually dispensed to reduce their hold-up, i.e. their inventory inside the reactor. [Pg.388]

Sirkar and Hanratty (S13) showed, by means of refined measurements using strip electrodes at different orientations with respect to the mean flow, that transverse velocity fluctuations play a significant part in the turbulent transport very close to the wall, and that the eddy diffusivity may well be dependent on the cube of the distance y+, leading to a Sc1/3 dependence of mass-transfer correlations, which is often found experimentally. [Pg.270]

To summarize, a comprehensive understanding of turbulent transport is not yet achieved, and information will be needed from optical as well as from further mass-transfer measurements. The latter will have to be made at high Reynolds numbers (> 50,000 in channel flow) and at very high Schmidt numbers (> 10,000) to yield critical information about the transfer process. [Pg.272]

It is the large scale eddies that are responsible for the very rapid transport of momentum, energy and mass across the whole flow field in turbulent flow, while the smallest eddies and their destruction by viscosity are responsible for the uniformity of properties on the fine scale. Although it is the fluctuations in the flow that promote these high transfer rates, it is... [Pg.61]

Authors efforts in this part of the work have been concentrated on developing turbulence closures for the statistical description of two-phase turbulent flows. The primary emphasis is on development of models which are more rigorous, but can be more easily employed. The main subjects of the modeling are the Reynolds stresses (in both phases), the cross-correlation between the velocities of the two phases, and the turbulent fluxes of the void fraction. Transport of an incompressible fluid (the carrier gas) laden with monosize particles (the dispersed phase) is considered. The Stokes drag relation is used for phase interactions and there is no mass transfer between the two phases. The particle-particle interactions are neglected the dispersed phase viscosity and pressure do not appear in the particle momentum equation. [Pg.148]

Table 5.1 shows that, with the boundary conditions present in most environmental flows (i.e., the Earth s surface, ocean top and bottom, river or lake bottom), turbulent flow would be the predominant condition. One exception that is important for interfacial mass transfer would be very close to an interface, such as air-solid, solid-liquid, or air-water interfaces, where the distance from the interface is too small for turbulence to occur. Because turbulence is an important source of mass transfer, the lack of turbulence very near the interface is also significant for mass transfer, where diffusion once again becomes the predominant transport mechanism. This will be discussed further in Chapter 8. [Pg.97]

Mass transfer from swarm of bubbles into turbulent liquid controls the rate of many chemical and biochemical processes. It is assumed that the mechanism of mass transport in liquid phase is due to a renewal of the liquid at the bubble surface. Models of the process differ in the scale of flow, which is responsible for the renewal. [Pg.121]

Flow in circular tubes is of interest to many corrosion engineers. A large number of correlations exist for mass transport due to turbulent flow in a smooth straight pipe (4,9). The flow is transitionally turbulent at Re 2 X 103 and is fully turbulent at Re 105 (4). The most frequently used expression for turbulent conditions at a straight tube wall is that given by Chilton and Colburn using the analogy from heat transfer (13) ... [Pg.166]

The electrode is uniformly accessible to the diffusing ions within dimensionless electrode radius, 0.1 < R/d < 1.0, for turbulent nozzle flow and, 0.1 < R/d < 0.5, for laminar nozzle flow. Within the region of uniform accessibility, the mass transport rate is relatively independent of the electrode size in both laminar and turbulent flow for 0.2 < Hjd < 6, where H is the nozzle-to-plate distance. Beyond the region of uniform accessibility, the mass transfer rate decreases with the radial distance. In the intermediate range, 1 < R/d < 4, the turbulent impinging jet changes from the stagnation flow to the wall-jet flow and for R/d > 4 the wall-jet flow predominates (- wall-jet electrode). [Pg.351]


See other pages where Turbulent flow, mass transfer/transport is mentioned: [Pg.146]    [Pg.101]    [Pg.90]    [Pg.428]    [Pg.700]    [Pg.40]    [Pg.223]    [Pg.514]    [Pg.272]    [Pg.272]    [Pg.183]    [Pg.10]    [Pg.506]    [Pg.250]    [Pg.251]    [Pg.299]    [Pg.187]    [Pg.290]    [Pg.14]    [Pg.123]    [Pg.157]    [Pg.89]    [Pg.90]    [Pg.63]    [Pg.107]    [Pg.293]    [Pg.195]    [Pg.573]    [Pg.117]    [Pg.429]    [Pg.396]   


SEARCH



Fluid motion, mass transfer/transport turbulent flow

Mass transfer turbulence

Mass transfer/transport

Mass transport

Mass turbulent flow

Transport flows

Turbulence flow

Turbulent flow

Turbulent flow Turbulence

Turbulent flow mass transfer

Turbulent transport

© 2024 chempedia.info