Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Turbulence buffer layer

As velocity continues to rise, the thicknesses of the laminar sublayer and buffer layers decrease, almost in inverse proportion to the velocity. The shear stress becomes almost proportional to the momentum flux (pk ) and is only a modest function of fluid viscosity. Heat and mass transfer (qv) to the wall, which formerly were limited by diffusion throughout the pipe, now are limited mostly by the thin layers at the wall. Both the heat- and mass-transfer rates are increased by the onset of turbulence and continue to rise almost in proportion to the velocity. [Pg.90]

For turbulent flow of a fluid past a solid, it has long been known that, in the immediate neighborhood of the surface, there exists a relatively quiet zone of fluid, commonly called the Him. As one approaches the wall from the body of the flowing fluid, the flow tends to become less turbulent and develops into laminar flow immediately adjacent to the wall. The film consists of that portion of the flow which is essentially in laminar motion (the laminar sublayer) and through which heat is transferred by molecular conduction. The resistance of the laminar layer to heat flow will vaiy according to its thickness and can range from 95 percent of the total resistance for some fluids to about I percent for other fluids (liquid metals). The turbulent core and the buffer layer between the laminar sublayer and turbulent core each offer a resistance to beat transfer which is a function of the turbulence and the thermal properties of the flowing fluid. The relative temperature difference across each of the layers is dependent upon their resistance to heat flow. [Pg.558]

That tire existence of the buffer layer may be neglected and that in turbulent flow the boundary layer may be considered as consisting of a turbulent region adjacent to a laminar sub-layer which separates it from the surface. [Pg.667]

Equation 11.12 does not fit velocity profiles measured in a turbulent boundary layer and an alternative approach must be used. In the simplified treatment of the flow conditions within the turbulent boundary layer the existence of the buffer layer, shown in Figure 11.1, is neglected and it is assumed that the boundary layer consists of a laminar sub-layer, in which momentum transfer is by molecular motion alone, outside which there is a turbulent region in which transfer is effected entirely by eddy motion (Figure 11.7). The approach is based on the assumption that the shear stress at a plane surface can be calculated from the simple power law developed by Blasius, already referred to in Chapter 3. [Pg.675]

In the Taylor-Prandtl modification of the theory of heat transfer to a turbulent fluid, it was assumed that the heat passed directly from the turbulent fluid to the laminar sublayer and the existence of the buffer layer was neglected. It was therefore possible to apply the simple theory for the boundary layer in order to calculate the heat transfer. In most cases, the results so obtained are sufficiently accurate, but errors become significant when the relations are used to calculate heat transfer to liquids of high viscosities. A more accurate expression can be obtained if the temperature difference across the buffer layer is taken into account. The exact conditions in the buffer layer are difficult to define and any mathematical treatment of the problem involves a number of assumptions. However, the conditions close to the surface over which fluid is flowing can be calculated approximately using the universal velocity profile,(10)... [Pg.727]

The method is based on the calculation of the total temperature difference between the fluid and the surface, by adding the components attributable to the laminar sub-layer, the buffer layer and the turbulent region. In the steady state, the heat flux (<70) normal to the surface will be constant if the effects of curvature are neglected. [Pg.727]

In the Universal Velocity Profile , the laminar sub-iayer extends to values of y+ = 5 and the turbulent zone starts at y+ = 30 and the range 5 < y+ < 30, the buffer layer, is covered by a second linear relation between and In, y+. What is the maximum difference between the values of u+, in the range 5 < y4 < 30, using the two methods of representation of the velocity profile ... [Pg.863]

A review on drag-reducing polymers is given in the literature [1359]. It has been suggested that drag reduction occurs by the interactions between elastic macromolecules and turbulent-flow macrostructures. In turbulent pipe flow, the region near the wall, composed of a viscous sublayer and a buffer layer, plays a major role in drag reduction. [Pg.167]

Integrating Eq. (6-24) over the turbulent boundary layer (from jq, the edge of the buffer layer, to y) gives... [Pg.158]

Equation (6-31) applies to the laminar sublayer region in a Newtonian fluid, which has been found to correspond to 0 < y+ < 5. The intermediate region, or buffer zone, between the laminar sublayer and the turbulent boundary layer can be represented by the empirical equation... [Pg.159]

The near-wall region is conceptually subdivided into three layers, based on experimental evidence. The innermost layer is the viscous sublayer in which the flow is almost laminar, and the molecular viscosity plays a dominant role. The outer layer is considered to be fully turbulent. The buffer layer lies between... [Pg.321]

To save computational effort, high-Reynolds number models, such as k s and its variants, are coupled with an approach in which the viscosity-affected inner region (viscous sublayer and buffer layer) are not resolved. Instead, semiempiri-cal formulas called wall functions are used to bridge the viscosity-affected region between the wall and the fully turbulent region. The two approaches to the sublayer problem are depicted schematically in Fig. 2 (Fluent, 2003). [Pg.322]

As the fluid s velocity must be zero at the solid surface, the velocity fluctuations must be zero there. In the region very close to the solid boundary, ie the viscous sublayer, the velocity fluctuations are very small and the shear stress is almost entirely the viscous stress. Similarly, transport of heat and mass is due to molecular processes, the turbulent contribution being negligible. In contrast, in the outer part of the turbulent boundary layer turbulent fluctuations are dominant, as they are in the free stream outside the boundary layer. In the buffer or generation zone, turbulent and molecular processes are of comparable importance. [Pg.66]

Equation 2.40 is an empirical equation known as the one-seventh power velocity distribution equation for turbulent flow. It fits the experimentally determined velocity distribution data with a fair degree of accuracy. In fact the value of the power decreases with increasing Re and at very high values of Re it falls as low as 1/10 [Schlichting (1968)]. Equation 2.40 is not valid in the viscous sublayer or in the buffer zone of the turbulent boundary layer and does not give the required zero velocity gradient at the centre-line. The l/7th power law is commonly written in the form... [Pg.87]

Consider a fully developed turbulent flow through a pipe of circular cross section. A turbulent boundary layer will exist with a thin viscous sublayer immediately adjacent to the wall, beyond which is the buffer or generation layer and finally the fully turbulent outer part of the boundary layer. [Pg.89]

Conditions in the fully turbulent outer part of the turbulent boundary layer are quite different. In a turbulent fluid, the shear stress f is given by equation 1.95. As illustrated in Example 1.10, outside the viscous sublayer and buffer zone the eddy kinematic viscosity e is much greater than the molecular kinematic viscosity v. Consequently equation 1.95 can be written as... [Pg.90]

Equations 2.58, 2.70 and 2.71 enable the velocity distribution to be calculated for steady fully developed turbulent flow. These equations are only approximate and lead to a discontinuity of the gradient at y+ = 30, which is where equations 2.70 and 2.71 intersect. The actual profile is, of course, smooth and the transition from the buffer zone to the fully turbulent outer zone is particularly gradual. As a result it is somewhat arbitrary where the limit of the buffer zone is taken often the value y+ = 70 rather than j + = 30 is used. The ability to represent the velocity profile in most turbulent boundary layers by the same v+ - y+ relationships (equations 2.58, 2.70 and 2.71) is the reason for calling this the universal velocity profile. The use of in defining v+ and y+ demonstrates the fundamental importance of the wall shear stress. [Pg.92]

Figure 2.4b shows, conceptually, the velocity distribution in steady turbulent flow through a straight round tube. The velocity at the tube wall is zero, and the fluid near the wall moves in laminar flow, even though the flow of the main body of fluid is turbulent. The thin layer near the wall in which the flow is laminar is called the laminar sublayer or laminar film, while the main body of fluid where turbulence always prevails is called the turbulent core. The intermediate zone between the laminar sublayer and the turbulent core is called the buffer layer, where the motion of fluid may be either laminar or turbulent at a given instant. With a relatively long tube, the above statement holds for most of the tube length, except for... [Pg.20]

Velocity distributions in turbulent flowthrough a straight, round tube vary with the flow rate or the Reynolds number. With increasing flow rates the velocity distribution becomes flatter and the laminar sublayer thinner. Dimensionless empirical equations involving viscosity and density are available that correlate the local fluid velocities in the turbulent core, buffer layer, and the laminar sublayer as functions of the distance from the tube axis. The ratio of the average velocity over the entire tube cross section to the maximum local velocity at the tube axis is approximately 0.7-0.85, and increases with the Reynolds number. [Pg.21]

Obtain a dimensionless relation for the velocity profile in the neighbourhood of a surface for the turbulent flow of a liquid, using Prandtl s concept of a Mixing Length (Universal Velocity Profile). Neglect the existence of the buffer layer and assume that, outside the laminar sub-layer, eddy transport mechanisms dominate. Assume that in the turbulent fluid the mixing length Xe is equal to 0.4 times the distance y from the surface and that the dimensionless velocity u1 is equal to 5.5 when the dimensionless distance y+ is unity. [Pg.310]

Substituting this equation into Eq. (7.52) and assuming that the turbulent Prandtl number is 1 gives in the buffer layer ... [Pg.636]

In terms of our previous qualitative discussion, the laminar sublayer is the region where 0, the buffer layer has eM r, and the turbulent layer has cm v. Therefore, taking e,v = 0 in Eq. (5-69) and integrating yields... [Pg.241]

A turbulent boundary layer is actually made up of three zones, a viscous or laminar sublayer immediately adjoining the wall, a buffer zone, and finally a turbulent zone making up the main boundary layer (Schlicting, 1968). Generally speaking, turbulent boundary layers are thicker than laminar boundary layers. [Pg.288]

There are two main approaches to modeling the near-wall region. In one approach, the so-called wall function approach, the viscosity-affected inner regions (viscous and buffer layers) are not modeled. Instead, semi-empirical formulae (wall functions) are used to bridge the viscosity-affected region between the wall and the fully turbulent region. In another approach, special, low Reynolds number turbulence models are developed to simulate the near-wall region flow. These two approaches are shown schematically in Fig. 3.5(b) and 3.5(c). [Pg.74]

In reality the laminar sublayer is continuously transformed into the fully turbulent region. A transition region exists between the two, known as the buffer layer, so that the wall law of velocity can be split into three areas, whose boundaries are set by experimentation. The laminar sublayer extends over the region... [Pg.311]

The turbulent flow velocity profile for Newtonian fluids is arbitrarily divided into three regions the viscous sublayer, the buffer layer, and the turbulent core. To represent velocity profiles in pipe flow, friction velocity defined as... [Pg.776]


See other pages where Turbulence buffer layer is mentioned: [Pg.312]    [Pg.312]    [Pg.89]    [Pg.651]    [Pg.667]    [Pg.708]    [Pg.720]    [Pg.865]    [Pg.156]    [Pg.158]    [Pg.66]    [Pg.115]    [Pg.237]    [Pg.385]    [Pg.73]    [Pg.66]    [Pg.311]   
See also in sourсe #XX -- [ Pg.125 ]

See also in sourсe #XX -- [ Pg.124 ]




SEARCH



Turbulent layer

© 2024 chempedia.info