Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Triplet isomerization

This may be due to a destabilization caused by twisting around the C32-C13 bond. Direct excitation isomerization yields (<)>jgo) are usually higher in systems characterized by high intersystem crossing. This suggests that a triplet isomerization mechanism plays an important role following direct excitation, a fact that was quantitatively confirmed for retinals in nonpolar solvents. With the exception of 11-cis PRSB, the lowest triplet state (T3) appears to possess a substantial isomerization barrier so that partition between cis and trans isomers takes place in higher vibronic states. An O2-induced mechanism, which is probably associated with a triplet pathway, characterizes the fluorescent derivatives ROH, RAc, and RBA. [Pg.132]

The conclusion from these studies is that singlet cis-trans isomerization of substituted conjugated dienes such as 2,4-hexatriene must proceed through a structure that is free to rotate at only one terminus, whereas sensitized (triplet) isomerization involves a structure that can rotate at both termini. [Pg.1097]

NMR Chemical shift differences m their H NMR spectra aid the structure deter mmation of esters Consider the two isomeric esters ethyl acetate and methyl propanoate As Figure 20 9 shows the number of signals and their multiplicities are the same for both esters Both have a methyl singlet and a triplet-quartet pattern for their ethyl group... [Pg.872]

Indazoles have been subjected to certain theoretical calculations. Kamiya (70BCJ3344) has used the semiempirical Pariser-Parr-Pople method with configuration interaction for calculation of the electronic spectrum, ionization energy, tt-electron distribution and total 7T-energy of indazole (36) and isoindazole (37). The tt-densities and bond orders are collected in Figure 5 the molecular diagrams for the lowest (77,77 ) singlet and (77,77 ) triplet states have also been calculated they show that the isomerization (36) -> (37) is easier in the excited state. [Pg.175]

Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977]. Fig. 1. Examples of temperature dependence of the rate constant for the reactions in which the low-temperature rate-constant limit has been observed 1. hydrogen transfer in the excited singlet state of the molecule represented by (6.16) 2. molecular reorientation in methane crystal 3. internal rotation of CHj group in radical (6.25) 4. inversion of radical (6.40) 5. hydrogen transfer in halved molecule (6.16) 6. isomerization of molecule (6.17) in excited triplet state 7. tautomerization in the ground state of 7-azoindole dimer (6.1) 8. polymerization of formaldehyde in reaction (6.44) 9. limiting stage (6.45) of (a) chain hydrobromination, (b) chlorination and (c) bromination of ethylene 10. isomerization of radical (6.18) 11. abstraction of H atom by methyl radical from methanol matrix [reaction (6.19)] 12. radical pair isomerization in dimethylglyoxime crystals [Toriyama et al. 1977].
The isomerization of alkenes is believed to take place via an excited state in which the two sp carbons are twisted 90° with respect to one another. This state is referred to as the p (perpendicular) state. This geometry is believed to be the minimum-energy geometry for both the singlet and triplet excited states. [Pg.766]

Aromatic compounds such as toluene, xylene, and phenol can photosensitize cis-trans interconversion of simple alkenes. This is a case in which the sensitization process must be somewhat endothermic because of the energy relationships between the excited states of the alkene and the sensitizers. The photostationary state obtained under these conditions favors the less strained of the alkene isomers. The explanation for this effect can be summarized with reference to Fig. 13.12. Isomerization takes place through a twisted triplet state. This state is achieved by a combination of energy transfer Irom the sensitizer and thermal activation. Because the Z isomer is somewhat higher in energy, its requirement for activation to the excited state is somewhat less than for the E isomer. If it is also assumed that the excited state forms the Z- and -isomers with equal ease, the rate of... [Pg.769]

Alkyl derivatives of 1,3-butadiene usually undergo photosensitized Z-E isomerism when photosensitizers that can supply at least 60 kcal/mol are used. Two conformers of the diene, the s-Z and s-E, exist in equilibrium, so there are two nonidentical ground states from which excitation can occur. Two triplet excited states that do not readily interconvert are derived from the s-E and s-Z conformers. Theoretical calculations suggest that at their energy minimum the excited states of conjugated dienes can be described as an alkyl radical and an orthogonal allyl system called an allylmethylene diradical ... [Pg.772]

Note. Both the rearrangement In t-ButanoI) and the double bond isomerization of (114) (In Benzene) are quenched in a diffusion-controlled process by suitable triplet acceptors e.g., naphthalene or 2,5-dimethylhexa-2,4-diene). The rearrangement (114) (118) -I- (120) is also observed on irradiation in... [Pg.322]

A which is not observed in individual solutions of the two enones at the same concentrations and may thus be indicative of a complex formation. However, the ratio of isomeric cyclobutane products resulting from such photocycloadditions is generally seen to be a quite sensitive function of steric effects and of the properties of the reaction solvent, of the excited state(s) involved (in some cases two different excited triplet states of the same enone have been found to lead to different adducts) and of the substituents of the excited enone and substrate. No fully satisfactory theory has yet been put forth to draw together all the observations reported thus far. [Pg.348]

Compounds A and B are isomeric diketones of molecular formula CgHio02. The H NMR spectrum of compound A contains two signals, both singlets, at 8 2.2 (six protons) and 2.8 (four protons). The H NMR spectrum of compound B contains two signals, one at 8 1.3 (triplet, six protons) and the other at 8 2.8 (quartet, four protons). What are the structures of compounds A and B ... [Pg.752]

Both CSs and CSs were also successfully generated by the fragmentation of ionized 4,5-dioxo-2-thioxo-l,3-dithione (65) and 2-thioxo-l,3-dithiole (66) (90JA3750). Tire three sulfur atoms in the anion and cation radicals were chemically equivalent, suggesting that they take the D h (or C2u) form (67 or 68). On the other hand, under similar conditions, 3-thioxo-1,2-dithiole (69) yielded two isomeric cation radicals the (or 2 ) form and the carbon disulfide 5-sulfide form (70). Ab initio calculations on three electronic states of CS3 at the 6-31G -l-ZPVE level indicated that the C21, form (68) was more stable than the carbon disulfide 5-sulfide form (70) in the neutral (both singlet and triplet states) and the anion radical states, but 68 was less stable than 70 in the radical cation state. [Pg.235]

Also in this case the relative energy of all the possible intermediates involved in the photochemical isomerization was calculated (OOOJOC2494). The results are collected in Fig. 2. Also in this case the sensitized irradiation involves the formation of the biradicals. We have to note, however, that the fission of O—Cq, bond in the triplet state of the molecule is not so favored as in furan. The process should be quite inefficient. The corresponding biradicals show the same energy as that in the triplet state. In this case, then, the formation of a biradical should depend on the activation energy. [Pg.46]

In contrast, when the irradiation is performed on 2-cyanopyrrole, the isomeric products are observed. In fact, in this case, the corresponding Dewar pyrrole shows a lower energy than in the previous case, allowing the formation of the isomeric products (Fig. 6). When 2-methylpyrrole is used as substrate, the formation of the triplet state is favored, but this triplet state cannot evolve through the formation of the biradical intermediate. [Pg.55]

Also in this case calculation results fit the experimental data (Fig. 7) [99H(50)1115]. In fact, the singlet excited state can evolve, giving the Dewar thiophene (and then isomeric thiophenes) or the corresponding excited triplet state. This triplet state cannot be converted into the biradical intermediate because this intermediate shows a higher energy than the triplet state, thus preventing the formation of the cyclopropenyl derivatives. [Pg.56]

In the photochemical isomerization of isoxazoles, we have evidence for the presence of the azirine as the intermediate of this reaction. The azirine is stable and it is the actual first photoproduct of the reaction, as in the reaction of r-butylfuran derivatives. The fact that it is able to interconvert both photochemically and thermally into the oxazole could be an accident. In the case of 3,5-diphenylisoxazole, the cleavage of the O—N bond should be nearly concerted with N—C4 bond formation (8IBCJ1293) nevertheless, the formation of the biradical intermediate cannot be excluded. The results of calculations are in agreement with the formation of the azirine [9911(50)1115]. The excited singlet state can convert into a Dewar isomer or into the triplet state. The conversion into the triplet state is favored, allowing the formation of the biradical intermediate. The same results [99H(50)1115] were obtained using as substrate 3-phenyl-5-methylisoxazole (68ACR353) and... [Pg.59]

The irradiation of 3-phenyl-4-acetyl-5-methylisoxazole (49) gave the isomeric oxazole (50) (Scheme 22) (75JA6484 76HCA2074). The reaction can involve the formation of the biradical intermediate starting from the triplet state, in agreement... [Pg.61]

Computational results are reported for the isomerization of 1,4,5-trimethyl-imidazole (99MI233). They show that the isomerization occurs through the Dewar isomer arising from the excited singlet state. The formation of the triplet state is energetically favored however, the biradical intermediate cannot be produced because it has higher energy than the excited triplet state. [Pg.68]

Semiempirical calculations on 94 showed that it can isomerize only via the ICI mechanism in fact, the triplet state cannot evolve to give the corresponding biradical derivatives (Fig. 16) (99MI233). [Pg.73]

When the reaction was carried out on the phenoxy derivative 106, only 107 was obtained (Scheme 44) (88JHC1551). The formation of this product was rationalized assuming a heteroly tic cleavage of the O—N bond followed by isomerization (Scheme 44). If the reaction occurs in the excited triplet state of the molecule, the biradical is the most probable intermediate. [Pg.79]

The isomerization described in Scheme 44 could not be observed when the 5-methyl derivative 108 was used. The quinazolinone 109 was obtained in high yield, probably via 110 through the cleavage of the O—N bond in the triplet state (Scheme 45) [89H(29)737 89H(29)1301 91 JCS(P2)187]. The same behavior (but in low yield) was observed with 111 (Scheme 45) (90JHC861). [Pg.79]

The lack of any difference in the rate of isomerization between fluoro-sulfonic acid solutions of 34 which had been thoroughly degassed, and those which were saturated with oxygen, suggests that the reaction does not proceed via a triplet mechanism. In fluorosulfonic acid no unproton-ated acid is detected, ruling out the possibility of n,7r excitation. Thus, there is little doubt in this case that it is the Tr,Tr singlet state which is the reactive species. Experiments carried out with a variety of methyl-substituted protonated cydohexadienones have likewise ruled out the... [Pg.137]

Detection of an Intermediate. In many cases, an intermediate cannot be isolated but can be detected by IR, NMR, or other spectra. The detection by Raman spectra of NOj was regarded as strong evidence that this is an intermediate in the nitration of benzene (see 11-2). Free radical and triplet intermediates can often be detected by ESR and by CIDNP (see Chapter 5). Free radicals [as well as radical ions and EDA complexes] can also be detected by a method that does not rely on spectra. In this method, a doublebond compound is added to the reaction mixture, and its fate traced. One possible result is cis-trans conversion. For example, cis-stilbene is isomerized to the trans isomer in the presence of RS- radicals, by this mechanism ... [Pg.288]

UV photolysis (Chapman et al., 1976 Chedekel et al., 1976) and vacuum pyrolysis (Mal tsev et al., 1980) of trimethylsilyldiazomethane [122]. The silene formation occurred as a result of fast isomerization of the primary reaction product, excited singlet trimethylsilylcarbene [123] (the ground state of this carbene is triplet). When the gas-phase reaction mixture was diluted with inert gas (helium) singlet-triplet conversion took place due to intermolecular collisions and loss of excitation. As a result the final products [124] of formal dimerization of the triplet carbene [123] were obtained. [Pg.47]

Fujii, R. et al., Cis-to-trans isomerization of spheroidene in the triplet state as detected by time-resolved absorption spectroscopy, J. Phys. Chem. A, 106, 2410, 2002. Montenegro, M.A. et al., Model studies on the photosensitized isomerization of bixin, J. Agric. Food Chem., 52, 367, 2004. [Pg.239]


See other pages where Triplet isomerization is mentioned: [Pg.153]    [Pg.233]    [Pg.156]    [Pg.108]    [Pg.92]    [Pg.153]    [Pg.233]    [Pg.156]    [Pg.108]    [Pg.92]    [Pg.2948]    [Pg.62]    [Pg.174]    [Pg.40]    [Pg.62]    [Pg.767]    [Pg.774]    [Pg.313]    [Pg.872]    [Pg.223]    [Pg.1192]    [Pg.431]    [Pg.43]    [Pg.60]    [Pg.83]    [Pg.144]    [Pg.249]    [Pg.236]    [Pg.232]   
See also in sourсe #XX -- [ Pg.183 ]




SEARCH



Cis-trans isomerization triplet-sensitized

Isomerization triplet-excited region

Isomerization triplet-sensitized

Triplet state isomerizations

Triplet state isomerizations biacetyl sensitized

Triplet-State Isomerization in 3-Carotene and Spheroidene

Triplet-State Isomerization in Retinal

© 2024 chempedia.info