Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Triphenylphosphine hydroformylation

Carbonylhydridotris(triphenylphosphine Hydroformylation + Wittig reaction. accomplished. [Pg.150]

In contrast to triphenylphosphine-modified rhodium catalysis, a high aldehyde product isomer ratio via cobalt-catalyzed hydroformylation requires high CO partial pressures, eg, 9 MPa (1305 psi) and 110°C. Under such conditions alkyl isomerization is almost completely suppressed, and the 4.4 1 isomer ratio reflects the precursor mixture which contains principally the kinetically favored -butyryl to isobutyryl cobalt tetracarbonyl. At lower CO partial pressures, eg, 0.25 MPa (36.25 psi) and 110°C, the rate of isomerization of the -butyryl cobalt intermediate is competitive with butyryl reductive elimination to aldehyde. The product n/iso ratio of 1.6 1 obtained under these conditions reflects the equihbrium isomer ratio of the precursor butyryl cobalt tetracarbonyls (11). [Pg.466]

Ligand-Modified Rhodium Process. The triphenylphosphine-modified rhodium oxo process, termed the LP Oxo process, is the industry standard for the hydroformylation of ethylene and propylene as of this writing (ca 1995). It employs a triphenylphosphine [603-35-0] (TPP) (1) modified rhodium catalyst. The process operates at low (0.7—3 MPa (100—450 psi)) pressures and low (80—120°C) temperatures. Suitable sources of rhodium are the alkanoate, 2,4-pentanedionate, or nitrate. A low (60—80 kPa (8.7—11.6 psi)) CO partial pressure and high (10—12%) TPP concentration are critical to obtaining a high (eg, 10 1) normal-to-branched aldehyde ratio. The process, first commercialized in 1976 by Union Carbide Corporation in Ponce, Puerto Rico, has been ficensed worldwide by Union Carbide Corporation and Davy Process Technology. [Pg.467]

Ruthenium. Ruthenium, as a hydroformylation catalyst (14), has an activity signiftcandy lower than that of rhodium and even cobalt (22). Monomeric mthenium carbonyl triphenylphosphine species (23) yield only modest normal to branched regioselectivities under relatively forcing conditions. For example, after 22 hours at 120°C, 10 MPa (1450 psi) of carbon monoxide and hydrogen, biscarbonyltristriphenylphosphine mthenium [61647-76-5] ... [Pg.470]

Rhodium-catalyzed hydroformylation has been studied extensively (16—29). The most active catalyst source is hydridocarbonyltris(triphenylphosphine)rhodium, HRhCO[P(CgH )2]3 (30). However, a molecule of triphenylphosphine is presumed to dissociate to form the active species (21,28). Eurther dissociation could occur as shown ia equation 3. [Pg.118]

Olefin isomerization can be catalyzed by a number of catalysts such as molybdenum hexacarbonyl [13939-06-5] Mo(CO)g. This compound has also been found to catalyze the photopolymerization of vinyl monomers, the cyclization of olefins, the epoxidation of alkenes and peroxo species, the conversion of isocyanates to carbodiimides, etc. Rhodium carbonylhydrotris(triphenylphosphine) [17185-29-4] RhH(CO)(P(CgH )2)3, is a multifunctional catalyst which accelerates the isomerization and hydroformylation of alkenes. [Pg.172]

An example of a large scale application of the aqueous biphasic concept is the Ruhrchemie/Rhone-Poulenc process for the hydroformylation of propylene to n-butanal (Eqn. (15)), which employs a water-soluble rhodium(I) complex of trisulphonated triphenylphosphine (tppts) as the catalyst (Cornils and Wiebus, 1996). [Pg.46]

The product is 2,7-octadien-l-oI which can be dehydrogenated/hydrogenated internally to give 7-octenal, which can be hydroformylated to the dialdehyde, nonadialdehyde, and then hydrogenated to nonadiol. The initial product can be hydrogenated to 1-octanol the dialdehyde can be oxidized to the diacid. The catalyst used is Pd modified with the Li salt of monosulphonated triphenylphosphine. [Pg.141]

Betzemeier et al. (1998) have used f-BuOOH, in the presence of a Pd(II) catalyst bearing perfluorinated ligands using a biphasic system of benzene and bromo perfluoro octane to convert a variety of olefins, such as styrene, p-substituted styrenes, vinyl naphthalene, 1-decene etc. to the corresponding ketone via a Wacker type process. Xia and Fell (1997) have used the Li salt of triphenylphosphine monosulphonic acid, which can be solubilized with methanol. A hydroformylation reaction is conducted and catalyst recovery is facilitated by removal of methanol when filtration or extraction with water can be practised. The aqueous solution can be evaporated and the solid salt can be dissolved in methanol and recycled. [Pg.143]

Batch Experiments with Thermomorphic Systems. As a reference, we tested the hydroformylation of 1-octene in a completely homogeneous system using the same rhodium triphenylphosphine catalyst that is used for hydroformylation of lower aldehydes. This is sample R39 in Table 28.1, and gives us a baseline to compare the performance of our systems in terms of conversion and selectivity. To maintain consistency, we performed all the reactions at 100°C using the same amounts of reactants, catalysts and solvents. Under these conditions we only detected aldehyde products no alcohol or alkene isomers were formed. [Pg.247]

Most recently new applications for substrate-controlled branched-selective hydroformylation of alkenes substituted with inductively electron-with drawing substituents have emerged. A recent example is the hydroformylation of acrylamide with a standard rhodium/triphenylphosphine catalyst, which yields the branched aldehyde exclusively (Scheme 4) [40]. Reduction of the aldehyde function furnishes 3-hydroxy-2-methylpropionamide, which is an intermediate en route to methyl methacrylate. [Pg.150]

No catalyst has an infinite lifetime. The accepted view of a catalytic cycle is that it proceeds via a series of reactive species, be they transient transition state type structures or relatively more stable intermediates. Reaction of such intermediates with either excess ligand or substrate can give rise to very stable complexes that are kinetically incompetent of sustaining catalysis. The textbook example of this is triphenylphosphine modified rhodium hydroformylation, where a plot of activity versus ligand metal ratio shows the classical volcano plot whereby activity reaches a peak at a certain ratio but then falls off rapidly in the presence of excess phosphine, see Figure... [Pg.6]

In the practice of gas recycle hydroformylation [7], rhodium complex and triphenylphosphine are dissolved in a suitable solvent. The reactor is pressurized with the... [Pg.12]

Mitsubishi has patented a triphenylphosphine oxide-modified rhodium catalyst for the hydroformylation of higher alkenes with both alkyl branches and internal bonds. [19] Reaction conditions are 50-300 kg/cm2 of CO/H2 and 100-150 degrees C. The high CO/H2 partial pressures provide stabilization for rhodium in the reactor, but rhodium stability in the vaporizer separation system is a different matter. Mitsubishi adds triphenylphosphine to stabilize rhodium in the vaporizer. After separation, triphenylphosphine is converted to its oxide before the catalyst is returned to the reactor. [Pg.23]

Equation 2.6. Scrambling of triphenylphosphine monosulfonated sodium salt under hydroformylation... [Pg.25]

In one such procedure a rhodium complex concentrate prepared from a 400 ppm rhodium containing hydroformylation catalyst solution, for which catalytic activity had declined to about 30 percent of its initial value, was concentrated in a wiped-film evaporator to about 27,700 ppm rhodium. This concentrate was oxygenated with tertbu-tylhydroperoxide. After isolation and treatment with triphenylphosphine, a 70% yield of [HRh(CO)(PPh3)3] was obtained.[41]... [Pg.36]

A set of core-functionalized dendrimers was synthesized by Van Leeuwen et al. and one compound was applied in continuous catalysis. [45] The dendritic dppf, Xantphos and triphenylphosphine derivatives (Figures 4.22, 4.30 and 4.31) were active in rhodium-catalyzed hydroformylation and hydrogenation reactions (performed batch-wise). Dendritic effects were observed which are discussed in paragraph 4.5. The dendritic rhodium-dppf complex was applied in a continuous hydrogenation reaction of dimethyl itaconate. [Pg.88]

This Chapter will concentrate on the hydroformylation of propene by means of rhodium catalysts, modified by water-soluble ligands such as TPPTS (triphenylphosphine m-trisulfonate). [Pg.106]

Fig. 4. Dissociative mechanism for the rhodium-triphenylphosphine-catalyzed hydroformylation of olefins (24-27). Fig. 4. Dissociative mechanism for the rhodium-triphenylphosphine-catalyzed hydroformylation of olefins (24-27).
The rate of hydroformylation was found to vary in a nonlinear fashion as a function of triphenylphosphine concentration. A maximum in rate was noted at a triphenylphosphine/HRh(CO)(PPh3)3 weight ratio of (5-10) 1, as illustrated in Fig. 7. A maximum in selectivity to linear aldehyde was noted at about a 5 1 ratio, and no significant further increase was noted up to a 50 1 ratio of triphenylphosphine to rhodium complex. [Pg.27]

Fig. 10. Proposed mechanism for the ruthenium-triphenylphosphine-catalyzed hydroformylation of olefins (36). Fig. 10. Proposed mechanism for the ruthenium-triphenylphosphine-catalyzed hydroformylation of olefins (36).

See other pages where Triphenylphosphine hydroformylation is mentioned: [Pg.177]    [Pg.177]    [Pg.2]    [Pg.469]    [Pg.469]    [Pg.73]    [Pg.118]    [Pg.167]    [Pg.237]    [Pg.258]    [Pg.401]    [Pg.1037]    [Pg.294]    [Pg.404]    [Pg.182]    [Pg.6]    [Pg.24]    [Pg.24]    [Pg.34]    [Pg.42]    [Pg.56]    [Pg.153]    [Pg.153]    [Pg.176]    [Pg.194]    [Pg.220]    [Pg.224]    [Pg.226]    [Pg.53]    [Pg.1366]   
See also in sourсe #XX -- [ Pg.145 ]




SEARCH



Triphenylphosphine, sulfonated hydroformylation

© 2024 chempedia.info