Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trimers separations

However, one needs to take into account that all the calculations are done assuming a temperature of 0 K, and hence at room temperature these couplings will be minimal. Furthermore, in collaboration with Beljonne and co-workers, transition densities were calculated [25] for excitation transfer between two per-yleneimide chromophores coupled by a fluorene trimer (separation 3.4 nm) and found to be in line with the Forster approximations. [Pg.14]

Thiophene oligomers (dimer and trimer) separated by an insulating CH2-CH2 bridge (13) were electropolymerized [146]. In the latter case the product, resulting from dimerization, displays a lower conductivity than... [Pg.147]

Combination techniques such as microscopy—ftir and pyrolysis—ir have helped solve some particularly difficult separations and complex identifications. Microscopy—ftir has been used to determine the composition of copolymer fibers (22) polyacrylonitrile, methyl acrylate, and a dye-receptive organic sulfonate trimer have been identified in acryHc fiber. Both normal and grazing angle modes can be used to identify components (23). Pyrolysis—ir has been used to study polymer decomposition (24) and to determine the degree of cross-linking of sulfonated divinylbenzene—styrene copolymer (25) and ethylene or propylene levels and ratios in ethylene—propylene copolymers (26). [Pg.148]

The ratio of cycHc to linear oligomers, as well as the chain length of the linear sdoxanes, is controlled by the conditions of hydrolysis, such as the ratio of chlorosilane to water, temperature, contact time, and solvents (60,61). Commercially, hydrolysis of dim ethyl dichi oro sil a n e is performed by either batch or a continuous process (62). In the typical industrial operation, the dimethyl dichi orosilane is mixed with 22% a2eotropic aqueous hydrochloric acid in a continuous reactor. The mixture of hydrolysate and 32% concentrated acid is separated in a decanter. After separation, the anhydrous hydrogen chloride is converted to methyl chloride, which is then reused in the direct process. The hydrolysate is washed for removal of residual acid, neutralized, dried, and filtered (63). The typical yield of cycHc oligomers is between 35 and 50%. The mixture of cycHc oligomers consists mainly of tetramer and pentamer. Only a small amount of cycHc trimer is formed. [Pg.45]

Di- and Triisobutylcncs. Diisobutylene [18923-87-0] and tnisobutylenes are prepared by heating the sulfuric acid extract of isobutylene from a separation process to about 90°C. A 90% yield containing 80% dimers and 20% trimers results. Use centers on the dimer, CgH, a mixture of 2,4,4-trimethylpentene-1 and -2. Most of the dimer-trimer mixture is added to the gasoline pool as an octane improver. The balance is used for alkylation of phenols to yield octylphenol, which in turn is ethoxylated or condensed with formaldehyde. The water-soluble ethoxylated phenols are used as surface-active agents in textiles, paints, caulks, and sealants (see Alkylphenols). [Pg.372]

The clay-cataly2ed iatermolecular condensation of oleic and/or linoleic acid mixtures on a commercial scale produces approximately a 60 40 mixture of dimer acids and higher polycarboxyUc acids) and monomer acids (C g isomerized fatty acids). The polycarboxyUc acid and monomer fractions are usually separated by wiped-film evaporation. The monomer fraction, after hydrogenation, can be fed to a solvent separative process that produces commercial isostearic acid, a complex mixture of saturated fatty acids that is Hquid at 10°C. Dimer acids can be further separated, also by wiped-film evaporation, iato distilled dimer acids and trimer acids. A review of dimerization gives a comprehensive discussion of the subject (10). [Pg.115]

Acetaldehyde ammonia trimer (hexahydro-2,4,6-trimethyl-l,3,5-triazine trihydrate) [76231-37-3] M 183.3, m 94-96 , 95-97 , 97 , b 110 (partly dec). Crystd from EtOH-Et20. When prepared it separates as the trihydrate which can be dried in a vacuum over CaCl2 at room temp to give the anhydrous compound with the same melting point. The dihydrate melts at 25-28° then resolidifies and melts again at 94-95°. IRRITATES THE EYES AND MUCOUS MEMBRANES. [J Org Chem 38 3288 1973.]... [Pg.81]

Figure 13.2 Activated G protein receptors, here represented as seven red transmembrane helices, catalyze the exchange of GTP for GDP on the Gapy trimer. The then separated Ga-GTP and Gpy molecules activate various effector molecules. The receptor is embedded in the membrane, and Ga, Gpy and G py are attached to the membrane by lipid anchors, and they all therefore move in two dimensions. (Adapted from D. Clapham, Nature 379 297-299, 1996.)... Figure 13.2 Activated G protein receptors, here represented as seven red transmembrane helices, catalyze the exchange of GTP for GDP on the Gapy trimer. The then separated Ga-GTP and Gpy molecules activate various effector molecules. The receptor is embedded in the membrane, and Ga, Gpy and G py are attached to the membrane by lipid anchors, and they all therefore move in two dimensions. (Adapted from D. Clapham, Nature 379 297-299, 1996.)...
An alternative method for separating the hutenes is hy extracting isobutene (due to its higher reactivity) in cold sulfuric acid, which polymerizes it to di- and triisohutylene. The dimer and trimer of isobutene have high octane ratings and are added to the gasoline pool. [Pg.35]

In a very recent study, it has been demonstrated116 that zinc 5,15-bis(3,5-di-tert-butylphenyl)-porphyrin (13) without any activating halogen atoms at the chromophore can be directly linked in a very simple oxidative coupling reaction with silver(I) hexafluorophosphate to a mixture of porphyrin dimers, trimers and tetramers. The separation of the product mixture was achieved by gel-permeation chromatography based on the molecular weights of the oligomers. The dimer when re-exposed to the same reaction conditions yielded 25% of the tetramer.116... [Pg.610]

With bulky diphosphines Bu2P(CH2) PBu2 (n = 8-12), similar reactions of the diphosphines with MCl2(PhCN)2 give separable mixtures of monomer, dimer and trimer. With small phosphines (n = 5-7) dimers predominate (Figure 3.48). [Pg.216]

Diphenylcarbodiimide can be stored for several weeks at 0°. At room temperature it gradually solidifies to a mixture of trimer and polymer. The monomer can be separated from the solid by vacuum distillation. [Pg.32]

Fig. 8. GPC separation of square-shaped cyclic oligomer 15 from trimer 16 and structurally unidentified polymeric compounds... Fig. 8. GPC separation of square-shaped cyclic oligomer 15 from trimer 16 and structurally unidentified polymeric compounds...
Freitag and John [96] studied rapid separation of stabilisers from plastics. Fairly quantitative extraction (>90% of the expected content) of stabilisers from a powdered polymer was achieved by MAE within 3 to 6 min, as compared to 16 h of Soxhlet extraction for the same recovery. MAE and Soxhlet extraction have also been compared in the analysis of cyclic trimer in PET [113]. On the other hand, Ganzler et al. [128] compared the extraction yields for various types of compounds from nonpolymeric matrices for microwave irradiation with those obtained by the traditional Soxhlet or shake-flask extraction methods. Microwave extraction was more effective than the conventional methods, in particular in the case of polar compounds. As expected, the efficiency of the former is high especially when the extraction solvents contain water. With the high dipole moment of water, microwave heating is more... [Pg.138]


See other pages where Trimers separations is mentioned: [Pg.180]    [Pg.605]    [Pg.348]    [Pg.376]    [Pg.115]    [Pg.116]    [Pg.610]    [Pg.726]    [Pg.536]    [Pg.703]    [Pg.1105]    [Pg.21]    [Pg.273]    [Pg.171]    [Pg.236]    [Pg.221]    [Pg.19]    [Pg.102]    [Pg.108]    [Pg.144]    [Pg.68]    [Pg.41]    [Pg.48]    [Pg.435]    [Pg.79]    [Pg.80]    [Pg.514]    [Pg.313]    [Pg.835]    [Pg.210]    [Pg.241]    [Pg.27]    [Pg.259]    [Pg.68]    [Pg.70]    [Pg.219]    [Pg.214]   
See also in sourсe #XX -- [ Pg.140 ]




SEARCH



Trimeric

Trimerization

Trimers

© 2024 chempedia.info