Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transport processes function

Transport processes describe movement of the pesticide from one location to another or from one phase to another. Transport processes include both downward leaching, surface mnoff, volatilization from the soil to the atmosphere, as weU as upward movement by capillary water to the soil surface. Transport processes do not affect the total amount of pesticide in the environment however, they can move the pesticide to sites that have different potentials for degradation. Transport processes also redistribute the pesticide in the environment, possibly contaminating sites away from the site of apphcation such as surface and groundwater and the atmosphere. Transport of pesticides is a function of both retention and transport processes. [Pg.219]

All discussions of transport processes currently available in the literature are based on perturbation theory methods applied to kinetic pictures of micro-scattering processes within the macrosystem of interest. These methods do involve time-dependent hamiltonians in the sense that the interaction operates only during collisions, while the wave functions are known only before and after the collision. However these interactions are purely internal, and their time-dependence is essentially implicit the over-all hamiltonian of the entire system, such as the interaction term in Eq. (8-159) is not time-dependent, and such micro-scattering processes cannot lead to irreversible changes of thermodynamic (ensemble average) properties. [Pg.483]

This chapter focuses on types of models used to describe the functioning of biogeochemical cycles, i.e., reservoir or box models. Certain fundamental concepts are introduced and some examples are given of applications to biogeochemical cycles. Further examples can be found in the chapters devoted to the various cycles. The chapter also contains a brief discussion of the nature and mathematical description of exchange and transport processes that occur in the oceans and in the atmosphere. This chapter assumes familiarity with the definitions and basic concepts listed in Section 1.5 of the introduction such as reservoir, flux, cycle, etc. [Pg.62]

ATPase also catalyzed a passive Rb -Rb exchange, the rate of which was comparable to the rate of active Rb efflux. This suggested that the K-transporting step of H,K-ATPase is not severely limited by a K -occluded enzyme form, as was observed for Na,K-ATPase. Skrabanja et al. [164] also described the reconstitution of choleate solubilized H,K-ATPase into phosphatidylcholine-cholesterol liposomes. With the use of a pH electrode to measure the rate of H transport they observed not only an active transport, which is dependent on intravesicular K, but also a passive H exchange. This passive transport process, which exhibited a maximal rate of 5% of the active transport process, could be inhibited by vanadate and the specific inhibitor omeprazole, giving evidence that it is a function of gastric H,K-ATPase. The same authors demonstrated, by separation of non-incorporated H,K-ATPase from reconstituted H,K-ATPase on a sucrose gradient, that H,K-ATPase transports two protons and two ions per hydrolyzed ATP [112]. [Pg.46]

Simple chemical systems with several components (HCl, KOH, KCl in hydrogel) were used for modeling mass and charge balances coupled with equations for electric field, transport processes and equilibrium reactions [146]. This served for demonstrating the chemical systems function as electrolyte diodes and transistors, so-called electrolyte-microelectronics . [Pg.567]

The transient method characterized by linearly changing potential with time is called potential-sweep (potential-scan) voltammetry (cf. Section 5.5.2). In this case the transport process is described by equations of linear diffusion with the potential function... [Pg.299]

Assume that current is passed either through the total nucleus surface area or through part thereof, such as the edge of a two-dimensional nucleus of monoatomic thickness. The transition of the ion Mz+ to the metallic state obeys the equation for an irreversible electrode reaction, i.e. Eqs (5.2.12), (5.2.23) and (5.2.37). The effect of transport processes is neglected. The current density at time t thus depends on the number of nuclei and their active surface area. If there is a large number of nuclei, then the dependence of their number on time can be considered to be a continuous function. For the overall current density at time t we have... [Pg.380]

Ion transport processes of the cornea and the conjunctiva can play an important role in maintaining intra- and extracellular fluid homeostasis, signal transduction, and intercellular communication. As all these functions may contribute to the modulation of drug transport (see Section IV.B), it is essential that the baseline ion transport processes in the cornea and the conjunctiva be understood. [Pg.341]

Embedded within the brain are four ventricles or chambers that form a continuous fluid-filled system. In the roof of each of these ventricles is a network of capillaries referred to as the choroid plexus. It is from the choroid plexuses of the two lateral ventricles (one in each cerebral hemisphere) that cerebrospinal fluid (CSF) is primarily derived. Due to the presence of the blood-brain barrier, the selective transport processes of the choroid plexus determine the composition of the CSF. Therefore, the composition of the CSF is markedly different from the composition of the plasma. However, the CSF is in equilibrium with the interstitial fluid of the brain and contributes to the maintenance of a consistent chemical environment for neurons, which serves to optimize their function. [Pg.61]

The enthusiasm for using Caco-2 cells and other epithelial cell cultures in studies of drug transport processes has been explained by the ease with which new information can be derived from these fairly simple in vitro models [7]. For instance, drug transport studies in Caco-2 cells grown on permeable supports are easy to perform under controlled conditions. This makes it possible to extract information about specific transport processes that would be difficult to obtain in more complex models such as those based on whole tissues from experimental animals. Much of our knowledge about active and passive transport mechanisms in epithelia has therefore been obtained from Caco-2 cells and other epithelial cell cultures [10-15]. This has been possible since Caco-2 cells are unusually well differentiated. In many respects they are therefore functionally similar to the human small intestinal enterocyte, despite the fact that they originate from a human colorectal carcinoma [16, 17]. [Pg.73]

It is well known that the performance of the air gas-diffusion electrode is influenced not only by the activity of the catalyst, but also by all transport processes taking place in its porous structure. In addition, the transport hindrances in the electrode are function not only of its overall structure, but also of the porous structure and the surface properties of the catalyst. Methods for diagnostic of the activity and the transport properties of air gas-diffusion electrodes were proposed [9]. [Pg.143]

The theory on the level of the electrode and on the electrochemical cell is sufficiently advanced [4-7]. In this connection, it is necessary to mention the works of J.Newman and R.White s group [8-12], In the majority of publications, the macroscopical approach is used. The authors take into account the transport process and material balance within the system in a proper way. The analysis of the flows in the porous matrix or in the cell takes generally into consideration the diffusion, migration and convection processes. While computing transport processes in the concentrated electrolytes the Stefan-Maxwell equations are used. To calculate electron transfer in a solid phase the Ohm s law in its differential form is used. The electrochemical transformations within the electrodes are described by the Batler-Volmer equation. The internal surface of the electrode, where electrochemical process runs, is frequently presented as a certain function of the porosity or as a certain state of the reagents transformation. To describe this function, various modeling or empirical equations are offered, and they... [Pg.462]

Erosion is typically characterized by either occurring on the surface or in the bulk. Surface erosion is controlled by the chemical reaction and/or dissolution kinetics, while bulk erosion is controlled by diffusion and transport processes such as polymer swelling, diffusion of water through the polymer matrix, and the diffusion of degradation products from the swollen polymer matrix. The processes of surface and bulk erosion are compared schematically in Fig. 1. These two processes are idealized descriptions. In real systems, the tendency towards surface versus bulk erosion behavior is a function of the particular chemistry and device geometry (Tamada and Langer, 1993). Surface erosion may permit the... [Pg.170]

The answers are 321-cT 322-e, 323-i. (Hardman, pp 238-239, 791.) Reserpine is an adrenergic neuronal blocking agent that causes depletion of central and peripheral stores of NE and dopamine Reserpine acts by irreversibly inhibiting the magnesium-dependent ATP transport process that functions as a carrier for biogenic amines from the cytoplasm... [Pg.195]

Many experimental variations are possible when performing uptake studies [246]. In a simple experiment for which the cells are initially free of internalised compound, the initial rates of transmembrane transport may be determined as a function of the bulk solution concentrations. In such an experiment, hydrophilic compounds, such as sugars, amino acids, nucleotides, organic bases and trace metals including Cd, Cu, Fe, Mn, and Zn [260-262] have been observed to follow a saturable uptake kinetics that is consistent with a transport process mediated by the formation and translocation of a membrane imbedded complex (cf. Pb uptake, Figure 6 Mn uptake, Figure 7a). Saturable kinetics is in contrast to what would be expected for a simple diffusion-mediated process (Section 6.1.1). Note, however, that although such observations are consistent... [Pg.487]


See other pages where Transport processes function is mentioned: [Pg.424]    [Pg.569]    [Pg.811]    [Pg.313]    [Pg.239]    [Pg.548]    [Pg.1141]    [Pg.700]    [Pg.49]    [Pg.110]    [Pg.649]    [Pg.602]    [Pg.707]    [Pg.353]    [Pg.437]    [Pg.113]    [Pg.115]    [Pg.375]    [Pg.25]    [Pg.77]    [Pg.159]    [Pg.231]    [Pg.50]    [Pg.866]    [Pg.292]    [Pg.496]    [Pg.163]    [Pg.170]    [Pg.177]    [Pg.185]    [Pg.550]    [Pg.316]    [Pg.349]    [Pg.224]   


SEARCH



Processing function

Transport processes

Transportation processes

© 2024 chempedia.info