Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Storage and transport

The water content of crude oils at the wellhead is usually small as shown in Table 8.12 it generally increases during transport and storage and can attain 3%. [Pg.327]

Many compounds explode when triggered by a suitable stimulus however, most are either too sensitive or fail to meet cost and production-scale standards, requirements for safety in transportation, and storage stability. Propellants and explosives in large-scale use are based mosdy on a relatively small number of well-proven iagredients. Propellants and explosives for military systems are manufactured ia the United States primarily ia government owned plants where they are also loaded iato munitions. Composite propellants for large rockets are produced mainly by private iadustry, as are small arms propellants for sporting weapons. [Pg.3]

Liquefied natural gas (LNG) also plays a large role in both the transportation and storage of natural gas. At a pressure of 101.3 kPa (1 atm), methane can be Hquefted by reducing the temperature to about — 161°C. When in the Hquid form, methane occupies approximately 1/600 of the space occupied by gaseous methane at normal temperature and pressure. In spite of the very low temperature of the Hquid, LNG offers advantages for both shipping and storing natural gas. [Pg.173]

Dry Milk. Dry milk provides long-term storage capabHities, suppHes a product that can be used for food manufacturing operations, and because of its reduced volume and weight, transportation and storage costs are reduced. Dry milk has been used for manufactured products, but is used to a much greater extent for beverage products. Its properties are Hsted in Table 15. [Pg.365]

In addition to encompassing all of the unit operations in the plant, the plant flow sheets may also include materials handling operations associated with the transport and storage of materials in and around the mill. Typically, flow sheets provide quantitative information regarding water and slurry flows, toimages, and assays. [Pg.395]

The mature Haber-Bosch technology is unlikely to change substantiaHy in the foreseeable future. The centers for commercial ammonia production may, however, relocate to sites where large quantities of natural gas are flared from cmde oil production, eg, Saudi Arabia or Venezuela. Relocation would not offset the problems for agriculture of high transportation and storage costs for ammonia production and distribution. Whereas the development of improved lower temperature and pressure catalysts is feasible, none is on the horizon as of this writing. [Pg.92]

Mild steel can be used for transport and storage if product discoloration is not a problem, such as in gas conditioning appHcations. Contact with copper, brass, and other copper alloys may cause corrosion of the metal. [Pg.9]

The NRC has developed special procedures for the handling, transportation, and storage of nuclear fuel because radioactivity can be a health hazard if not properly shielded. Spent fuel is typically transported by rail or tmck in heavily shielded (Type B), sealed, thick metal shipping containers designed to withstand possible accidents, such as derailments or coHisions, which may occur during transport. The NRC certifies that each shipping container meets federal requirements. The U.S. Department of Transportation sets the rules for transportation. [Pg.92]

Succinic acid and succinic anhydride are sold in 25-kg net polyethylene (PE) bags having cardboard box protection for the anhydride, in 70-liter (50-kg net) fiber dmms, and in 55-gaHon (275-lb 125-kg net) dmms. The two products must be stored in a fresh, dry, ventilated area. Succinic anhydride must be carefully protected from moisture during transportation and storage to avoid hydrolysis to succinic acid. [Pg.538]

Treatment with sulfuric acid and fractional distillation are the main methods used to purify bromine. It is especially important to reduce the water content to less than 30 ppm to prevent corrosion of metal transportation and storage containers. [Pg.285]

George W. Gassman, Paul J. Schajhuch, Thomas J. McAvoy, Dale E. Seborg Process Economics F. A. Holland, J. K Wilkinson Transport and Storage of Fluids Meherwan P. Boyce Heat-Transfer Equipment Richard L. Shilling, Kenneth J. Bell,... [Pg.7]

Meherwan P. Boyce, P.E., Ph.D., President, Boyce Engineering International ASME Fellow Registered Professional Engineer (Texas, Oklalioma) (Section 10, Transport and Storage of Fluids Section 29, Process Macliinery Drives)... [Pg.10]


See other pages where Storage and transport is mentioned: [Pg.330]    [Pg.336]    [Pg.441]    [Pg.151]    [Pg.383]    [Pg.242]    [Pg.511]    [Pg.46]    [Pg.548]    [Pg.359]    [Pg.268]    [Pg.489]    [Pg.21]    [Pg.27]    [Pg.319]    [Pg.19]    [Pg.879]    [Pg.880]    [Pg.882]    [Pg.884]    [Pg.886]    [Pg.888]    [Pg.890]    [Pg.892]    [Pg.894]    [Pg.896]    [Pg.898]    [Pg.900]    [Pg.902]    [Pg.904]    [Pg.906]    [Pg.908]    [Pg.910]    [Pg.912]    [Pg.914]    [Pg.920]    [Pg.922]    [Pg.924]    [Pg.926]   


SEARCH



Transportation and storage

© 2024 chempedia.info