Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transmission electron microscopy polymers

S. J. Hanley, J. Giasson, J. F. Revol, and D. G. Gray, Atomic force microscopy of cellulose microfibrils Comparison wifli transmission electron microscopy. Polymer, 33 (1992) 4639-4642. [Pg.110]

Hanley, S.J., Giasson, J., Revol, J.F., Gray, D.G., 1992. Atomic force microscopy of cellulose microfibrils—comparison with transmission electron-microscopy. Polymer 33 (21), 4639-4642. [Pg.283]

Saktoun EM, Boudet A, Chabert B, Hilaire B, Bouvart D, Morphology in PEEK carbon-fiber composites observed in transmission electron-microscopy. Polymer, 434(12), 2668-2669, 1993. [Pg.548]

Processes that occur at a size scale larger than the individual chain have been studied using microscopy, mainly transmission electron microscopy (TEM), but optical microscopy has been useful to examine craze shapes. The knowledge of the crazing process obtained by TEM has been ably summarised by Kramer and will not be repeated here [2,3]. At an interface between two polymers a craze often forms within one of the materials, typically the one with lower crazing stress. [Pg.223]

Multi-walled CNTs (MWCNTs) are produced by arc discharge between graphite electrodes but other carbonaceous materials are always formed simultaneously. The main by-product, nanoparticles, can be removed utilizing the difference in oxidation reaction rates between CNTs and nanoparticles [9]. Then, it was reported that CNTs can be aligned by dispersion in a polymer resin matrix [10]. However, the parameters of CNTs are uncontrollable, such as the diameter, length, chirality and so on, at present. Furthermore, although the CNTs are observed like cylinders by transmission electron microscopy (TEM), some reports have pointed out the possibility of non-cylindrical structures and the existence of defects [11-14]. [Pg.76]

Voigt-Martin, I. Use of Transmission Electron Microscopy to Obtain Quantitative Information About Polymers. Vol. 67, pp. 195—218. [Pg.162]

Usually, the molecular strands are coiled in the glassy polymer. They become stretched when a crack arrives and starts to build up the deformation zone. Presumably, strain softened polymer molecules from the bulk material are drawn into the deformation zone. This microscopic surface drawing mechanism may be considered to be analogous to that observed in lateral craze growth or in necking of thermoplastics. Chan, Donald and Kramer [87] observed by transmission electron microscopy how polymer chains were drawn into the fibrils at the craze-matrix-interface in PS films [92]. One explanation, the hypothesis of devitrification by Gent and Thomas [89] was set forth as early as 1972. [Pg.345]

The nano-scale structures in polymer layered-silicate nano-composites can be thoroughly characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). XRD is used to identify intercalated structures. XRD allows quantification of changes in layer spacing and the most commonly used to probe the nano-composite structure and... [Pg.32]

FIGURE 2.13 Transmission electron microscopy (TEM) photographs of (a) FNA4 and (b) F20A4. (From Maiti, M. and Bhowmick, A.K., J. Appl. Polym. Sci., 105, 435, 2007. Courtesy of Wiley InterScience.)... [Pg.44]

Chen S., Cao T., and Jin Y., Ruthenium tetraoxide staining technique for transmission electron microscopy of segmented block copoly(ether-ester), Polym. Commun., 28, 314, 1987. [Pg.160]

The authors have characterized the graft polymer by solvent extraction, transmission electron microscopy, dynamic mechanical analysis, mechanical testing (including measurement of tensile, tear, and impact strength), and morphology by SEM. The reaction scheme is given in Figure 11.25. [Pg.344]

Recent demands for polymeric materials request them to be multifunctional and high performance. Therefore, the research and development of composite materials have become more important because single-polymeric materials can never satisfy such requests. Especially, nanocomposite materials where nanoscale fillers are incorporated with polymeric materials draw much more attention, which accelerates the development of evaluation techniques that have nanometer-scale resolution." To date, transmission electron microscopy (TEM) has been widely used for this purpose, while the technique never catches mechanical information of such materials in general. The realization of much-higher-performance materials requires the evaluation technique that enables us to investigate morphological and mechanical properties at the same time. AFM must be an appropriate candidate because it has almost comparable resolution with TEM. Furthermore, mechanical properties can be readily obtained by AFM due to the fact that the sharp probe tip attached to soft cantilever directly touches the surface of materials in question. Therefore, many of polymer researchers have started to use this novel technique." In this section, we introduce the results using the method described in Section 21.3.3 on CB-reinforced NR. [Pg.597]

The use of lightly crosslinked polymers did result in hydrophilic surfaces (contact angle 50°, c-PI, 0.2 M PhTD). However, the surfaces displayed severe cracking after 5 days. Although qualitatively they appeared to remain hydrophilic, reliable contact angle measurements on these surfaces were impossible. Also, the use of a styrene-butadiene-styrene triblock copolymer thermoplastic elastomer did not show improved permanence of the hydrophilicity over other polydienes treated with PhTD. The block copolymer film was cast from toluene, and transmission electron microscopy showed that the continuous phase was the polybutadiene portion of the copolymer. Both polystyrene and polybutadiene domains are present at the surface. This would probably limit the maximum hydrophilicity obtainable since the RTD reagents are not expected to modify the polystyrene domains. [Pg.227]

There is great interest in developing molecular precursors for boron-nitrogen polymers and boron nitride solid state materials, and one general procedure is described in this report. Combinations of B-trichloroborazene and hexamethyldisilazane lead to formation of a gel which, upon thermolysis, gives hexagonal boron nitride. The BN has been characterized by infrared spectroscopy, x-ray powder diffraction and transmission electron microscopy. [Pg.378]

Ffirai and Toshima have published several reports on the synthesis of transition-metal nanoparticles by alcoholic reduction of metal salts in the presence of a polymer such as polyvinylalcohol (PVA) or polyvinylpyrrolidone (PVP). This simple and reproducible process can be applied for the preparation of monometallic [32, 33] or bimetallic [34—39] nanoparticles. In this series of articles, the nanoparticles are characterized by different techniques such as transmission electronic microscopy (TEM), UV-visible spectroscopy, electron diffraction (EDX), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) or extended X-ray absorption fine structure (EXAFS, bimetallic systems). The great majority of the particles have a uniform size between 1 and 3 nm. These nanomaterials are efficient catalysts for olefin or diene hydrogenation under mild conditions (30°C, Ph2 = 1 bar)- In the case of bimetallic catalysts, the catalytic activity was seen to depend on their metal composition, and this may also have an influence on the selectivity of the partial hydrogenation of dienes. [Pg.220]


See other pages where Transmission electron microscopy polymers is mentioned: [Pg.149]    [Pg.64]    [Pg.212]    [Pg.218]    [Pg.120]    [Pg.149]    [Pg.64]    [Pg.212]    [Pg.218]    [Pg.120]    [Pg.417]    [Pg.252]    [Pg.260]    [Pg.338]    [Pg.91]    [Pg.19]    [Pg.520]    [Pg.603]    [Pg.603]    [Pg.358]    [Pg.940]    [Pg.541]    [Pg.659]    [Pg.722]    [Pg.31]    [Pg.177]    [Pg.148]    [Pg.89]    [Pg.105]    [Pg.65]    [Pg.65]    [Pg.129]    [Pg.42]    [Pg.362]    [Pg.304]    [Pg.221]   
See also in sourсe #XX -- [ Pg.272 ]




SEARCH



Polymer Microscopy

Polymer electronics

Transmission electron microscopy

Transmission electron microscopy layered-silicate polymer

Transmission electron microscopy polymer blends

Transmission electron microscopy polymer nanocomposites

Transmission electronic microscopy

Transmission microscopy

© 2024 chempedia.info