Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transmembrane receptor Associated tyrosine kinase

Phospholipase C, which occurs in different subtypes in the cell, is a key enzyme of phosphatide inositol metabohsm (for cleavage specificity, see Fig. 5.24). Two central signaling pathways regulate phosphohpase C activity of the cell in a positive way (Fig. 6.4). Phospholipases of type CP (PL-CP) are activated by G-proteins and are thus linked into signal pathways starting from G-protein-coupled receptors. Phosphohpases of type Y (PL-Cy), in contrast, are activated by transmembrane receptors with intrinsic or associated tyrosine kinase activity (see Chapter 8, Chapter 10). The nature of the extracellular stimuli activated by the two major reaction pathways is very diverse (see Fig 6.4), which is why the phosphohpase C activity of the cell is subject to multiple regulation. [Pg.220]

Fig. 6.4. Formation and function of diacylglycerol and Ins(l,4,5)P3. Formation of diacylglycerol (DAG) and Ins(l,4,5)P3 is subject to regulation by two central signaling pathways, which start from transmembrane receptors with intrinsic or associated tyrosine kinase activity (see Chapters 8 11) or from G-protein-coupled receptors. DAG activates protein kinase C (PKC, see Chapter 7), which has a regulatory effect on ceU proliferation, via phosphorylation of substrate proteins. Ins(l,4,5)P3 binds to corresponding receptors (InsPs-R) and induces release of Ca from internal stores. The membrane association of DAG, PtdIns(3,4)P2 and PL-C is not shown here, for clarity. Fig. 6.4. Formation and function of diacylglycerol and Ins(l,4,5)P3. Formation of diacylglycerol (DAG) and Ins(l,4,5)P3 is subject to regulation by two central signaling pathways, which start from transmembrane receptors with intrinsic or associated tyrosine kinase activity (see Chapters 8 11) or from G-protein-coupled receptors. DAG activates protein kinase C (PKC, see Chapter 7), which has a regulatory effect on ceU proliferation, via phosphorylation of substrate proteins. Ins(l,4,5)P3 binds to corresponding receptors (InsPs-R) and induces release of Ca from internal stores. The membrane association of DAG, PtdIns(3,4)P2 and PL-C is not shown here, for clarity.
Transmembrane Receptors with Associated Tyrosine Kinase Activity... [Pg.286]

Fig. 9.1. The Ras protein as a central switching station of signaling pathways. A main pathway for Ras activation is via receptor tyrosine kinases, which pass the signal on via adaptor proteins and guanine nucleotide exchange factors to the Ras protein. Activation ofRas protein can also be initiated via G-protein-coupled receptors and via transmembrane receptors with associated tyrosine kinase activity. The membrane association of the Ras protein (see Fig. 9.6) is not shown for clarity. In addition, not aU signahng pathways that contribute to activation of the Ras protein are shown, nor are all effector reactions. Py omplex of the heterotrimeric G proteins GAP GTPase activating protein GEF guanine nucleotide exchange factor. Fig. 9.1. The Ras protein as a central switching station of signaling pathways. A main pathway for Ras activation is via receptor tyrosine kinases, which pass the signal on via adaptor proteins and guanine nucleotide exchange factors to the Ras protein. Activation ofRas protein can also be initiated via G-protein-coupled receptors and via transmembrane receptors with associated tyrosine kinase activity. The membrane association of the Ras protein (see Fig. 9.6) is not shown for clarity. In addition, not aU signahng pathways that contribute to activation of the Ras protein are shown, nor are all effector reactions. Py omplex of the heterotrimeric G proteins GAP GTPase activating protein GEF guanine nucleotide exchange factor.
Transmembrane receptors with associated tyrosine kinase activity... [Pg.311]

Signal Transmission via Transmembrane Receptors with Tyrosine-Specific Protein Kinase Activity Forkhead-associated Domains... [Pg.336]

Fig. 11.12 Overview of signaling pathways associated with activation of lymphocytes. The triggering signal for activation of T lymphocytes is generally antigen binding to the Tcell receptor. The activated receptor passes the signal on to associated tyrosine kinases like Fyn, Lck and ZAP70. These phospho-rylate the transmembrane protein LAT on cytoplasmic tyrosine residues. The LAT phospho-tyro-sine residues are docking sites for adaptors ( She,... Fig. 11.12 Overview of signaling pathways associated with activation of lymphocytes. The triggering signal for activation of T lymphocytes is generally antigen binding to the Tcell receptor. The activated receptor passes the signal on to associated tyrosine kinases like Fyn, Lck and ZAP70. These phospho-rylate the transmembrane protein LAT on cytoplasmic tyrosine residues. The LAT phospho-tyro-sine residues are docking sites for adaptors ( She,...
Mechanism of Action Ahuman epidermal growth factor that inhibits tyrosine kinases (TK) associated with transmembrane cell surface receptors found on both normal and cancer cells. One such receptor is epidermal growth factor receptor (EGFR). Therapea-tic Effect TK activity appears to be vitally important to cell proliferation and survival. Pharmacokinetics About 60% is absorbed after PO administration bioavailability is increased by food to almost 100%. Protein binding 93%. Extensively metabolized in liver. Primarily eliminated in feces minimal excretion in urine. Half-life 36 hr. [Pg.449]

Fig. 5.5. General functions of transmembrane receptors. Extracellular signals convert the transmembrane receptor from the inactive form R to the active form R. The activated receptor transmits the signal to effector proteins next in the reaction sequence. Important effector reactions are the activation of heterotrimeric G-proteins, of protein tyrosine kinases and of protein tyrosine phosphatases. The tyrosine kinases and tyrosine phosphatases may be an intrinsic part of the receptor or they may be associated with the receptor. The activated receptor may also include adaptor proteins in the signaling pathway or it may induce opening of ion channels. Fig. 5.5. General functions of transmembrane receptors. Extracellular signals convert the transmembrane receptor from the inactive form R to the active form R. The activated receptor transmits the signal to effector proteins next in the reaction sequence. Important effector reactions are the activation of heterotrimeric G-proteins, of protein tyrosine kinases and of protein tyrosine phosphatases. The tyrosine kinases and tyrosine phosphatases may be an intrinsic part of the receptor or they may be associated with the receptor. The activated receptor may also include adaptor proteins in the signaling pathway or it may induce opening of ion channels.
In the Akt signaling pathway (review Downward, 1998), first an extracellular growth factor activates the corresponding transmembrane receptor (e.g., PGDF receptor, see 8.1). Consequently, tyrosine phosphorylation takes place on the cytoplasmic domain of the receptor. The tyrosine residues serve as docking sites for the SH2 domain of the p85 subimit of the PI3-kinase. The associated translocation of PI3-kinase is synonymous with its activation. The PtdIns(3,4,5)P3 formed binds to the PH domain of the signal protein next in sequence, the Akt kinase, which recruits the latter to the membrane. [Pg.231]

Another type of transmembrane receptor is associated, on the cytoplasmic side, with a tyrosine kinase that is activated when a ligand binds to the extracellular receptor domain (see Chapter 11). The tyrosine kinase and the receptor are not located on the same protein in this case. [Pg.286]

In addition to receptor tyrosine kinases, the cell also contains a number of tyrosine-specific protein kinases that are not an integral component of transmembrane receptors. These nonreceptor tyrosine kinases are localized in the cytoplasm at least occasionally or they are associated with transmembrane receptors on the cytoplasmic side of the cell membrane. They are therefore also known as cytoplasmic tyrosine kinases. The nonreceptor tyrosine kinases perform essential functions in signal transduction via cytokine receptors (see Chapter 11) and T cell receptors, and in other signaling pathways. [Pg.309]

Cytokines all function using a group of transmembrane receptors embedded in the plasma membranes of target cells. The receptors have no tyrosine kinase activity but associate with and activate kinases known as Janus kinases (JAKs). These kinases phosphory-late tyrosine side chains in their receptors, and the phosphorylated receptors activate transcription factors of the STAT (signal transducer-activators of transcription) group.186-195 The specificity of cytokine action results from a combination of receptor recognition and recognition of the various STAT molecules by different JAKs.111 Cytokines have a variety of structures. Many are helix bundles or have (3 sheet structures (Fig. 30-6). [Pg.1847]

Fig. 6-24 Schematic representation of the epidermal growth factor (EGF) receptor. The receptor is an integral membrane protein with a single transmembrane domain. The ligand binding site is in the extracellular domain and there is a tyrosine kinase domain near the C terminus in the cytoplasm, (a) At rest the receptor exists as single subunits. (b) Upon binding EGF, the receptor forms dimers stabilized by noncovalent associations. After dimerization the activated tyrosine kinase phosphorylates tyrosine residues in the cytoplasmic domain prior to the recruitment of further proteins to bind to the receptor. The formation of a protein assembly on the cytoplasmic domain is necessary for activation of enzymes that regulate cell metabolism and gene transcription. Fig. 6-24 Schematic representation of the epidermal growth factor (EGF) receptor. The receptor is an integral membrane protein with a single transmembrane domain. The ligand binding site is in the extracellular domain and there is a tyrosine kinase domain near the C terminus in the cytoplasm, (a) At rest the receptor exists as single subunits. (b) Upon binding EGF, the receptor forms dimers stabilized by noncovalent associations. After dimerization the activated tyrosine kinase phosphorylates tyrosine residues in the cytoplasmic domain prior to the recruitment of further proteins to bind to the receptor. The formation of a protein assembly on the cytoplasmic domain is necessary for activation of enzymes that regulate cell metabolism and gene transcription.

See other pages where Transmembrane receptor Associated tyrosine kinase is mentioned: [Pg.168]    [Pg.271]    [Pg.323]    [Pg.422]    [Pg.165]    [Pg.222]    [Pg.358]    [Pg.29]    [Pg.722]    [Pg.395]    [Pg.398]    [Pg.166]    [Pg.824]    [Pg.267]    [Pg.16]    [Pg.17]    [Pg.844]    [Pg.1192]    [Pg.111]    [Pg.156]    [Pg.24]    [Pg.530]    [Pg.100]    [Pg.67]    [Pg.280]    [Pg.337]    [Pg.1755]    [Pg.20]    [Pg.117]    [Pg.353]    [Pg.24]    [Pg.56]    [Pg.394]    [Pg.99]   
See also in sourсe #XX -- [ Pg.358 , Pg.358 ]




SEARCH



Associated tyrosine kinase

Receptor kinases

Receptor tyrosine kinases

Receptors transmembrane

Transmembrane

Transmembrane tyrosine kinase receptor

Tyrosine kinases

Tyrosines tyrosine kinase

© 2024 chempedia.info