Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition-state theory thermodynamics

The standard enthalpy difference between reactant(s) of a reaction and the activated complex in the transition state at the same temperature and pressure. It is symbolized by AH and is equal to (E - RT), where E is the energy of activation, R is the molar gas constant, and T is the absolute temperature (provided that all non-first-order rate constants are expressed in temperature-independent concentration units, such as molarity, and are measured at a fixed temperature and pressure). Formally, this quantity is the enthalpy of activation at constant pressure. See Transition-State Theory (Thermodynamics) Transition-State Theory Gibbs Free Energy of Activation Entropy of Activation Volume of Activation... [Pg.233]

See Transition-State Theory Transition-State Theory (Thermodynamics) Transition-State Theory in Solutions Entropy of Activation Volume of Activation... [Pg.234]

UNI MOLECULAR REACTIONS AND TRANSITION STATE THEORY TRANSITION-STATE THEORY (Thermodynamics)... [Pg.785]

In comparison to collision rate theory, transition state theory allows accounting for more details of the molecular structure in the calculation of the rate coefficient. In the transition state theory thermodynamic equilibrium is assumed between the reacting species and the species in the transition state. [Pg.1356]

A more general, and for the moment, less detailed description of the progress of chemical reactions, was developed in the transition state theory of kinetics. This approach considers tire reacting molecules at the point of collision to form a complex intermediate molecule before the final products are formed. This molecular species is assumed to be in thermodynamic equilibrium with the reactant species. An equilibrium constant can therefore be described for the activation process, and this, in turn, can be related to a Gibbs energy of activation ... [Pg.47]

A more interesting possibility, one that has attracted much attention, is that the activation parameters may be temperature dependent. In Chapter 5 we saw that theoiy predicts that the preexponential factor contains the quantity T", where n = 5 according to collision theory, and n = 1 according to the transition state theory. In view of the uncertainty associated with estimation of the preexponential factor, it is not possible to distinguish between these theories on the basis of the observed temperature dependence, yet we have the possibility of a source of curvature. Nevertheless, the exponential term in the Arrhenius equation dominates the temperature behavior. From Eq. (6-4), we may examine this in terms either of or A//. By analogy with equilibrium thermodynamics, we write... [Pg.251]

The transition state theory allows us to apply results of equilibrium thermodynamics, and we, therefore, write, for a reactant or transition state species i. [Pg.254]

The activation parameters from transition state theory are thermodynamic functions of state. To emphasize that, they are sometimes designated A H (or AH%) and A. 3 4 These values are the standard changes in enthalpy or entropy accompanying the transformation of one mole of the reactants, each at a concentration of 1 M, to one mole of the transition state, also at 1 M. A reference state of 1 mole per liter pertains because the rate constants are expressed with concentrations on the molar scale. Were some other unit of concentration used, say the millimolar scale, values of AS would be different for other than a first-order rate constant. [Pg.160]

To understand how collision theory has been derived, we need to know the velocity distribution of molecules at a given temperature, as it is given by the Maxwell-Boltzmann distribution. To use transition state theory we need the partition functions that follow from the Boltzmann distribution. Hence, we must devote a section of this chapter to statistical thermodynamics. [Pg.80]

The interpretation of phenomenological electron-transfer kinetics in terms of fundamental models based on transition state theory [1,3-6,10] has been hindered by our primitive understanding of the interfacial structure and potential distribution across ITIES. The structure of ITIES was initially studied by electrochemical and thermodynamic analyses, and more recently by computer simulations and interfacial spectroscopy. Classical electrochemical analysis based on differential capacitance and surface tension measurements has been extensively discussed in the literature [11-18]. The picture that emerged from... [Pg.190]

Nonlinear Hamiltonian system, geometric transition state theory, 200-201 Nonlinear thermodynamics coefficients linear limit, 36 entropy production rate, 39 parity, 28-29... [Pg.285]

The thermodynamic formulation of the transition state theory is useful in considerations of reactions in solution when one is examining a particular class of reactions and wants to extrapolate kinetic data obtained for one reactant system to a second system in which the same function groups are thought to participate (see Section 7.4). For further discussion of the predictive applications of this approach and its limitations, consult the books by Benson (59) and Laidler (60). Laidler s kinetics text (61) and the classic by Glasstone, Laidler, and Eyring (54) contain additional useful background material. [Pg.118]

While the collision theory of reactions is intuitive, and the calculation of encounter rates is relatively straightforward, the calculation of the cross-sections, especially the steric requirements, from such a dynamic model is difficult. A very different and less detailed approach was begun in the 1930s that sidesteps some of the difficulties. Variously known as absolute rate theory, activated complex theory, and transition state theory (TST), this class of model ignores the rates at which molecules encounter each other, and instead lets thermodynamic/statistical considerations predict how many combinations of reactants are in the transition-state configuration under reaction conditions. [Pg.139]

Quantitative estimates of E are obtained the same way as for the collision theory, from measurements, or from quantum mechanical calculations, or by comparison with known systems. Quantitative estimates of the A factor require the use of statistical mechanics, the subject that provides the link between thermodynamic properties, such as heat capacities and entropy, and molecular properties (bond lengths, vibrational frequencies, etc.). The transition state theory was originally formulated using statistical mechanics. The following treatment of this advanced subject indicates how such estimates of rate constants are made. For more detailed discussion, see Steinfeld et al. (1989). [Pg.143]

A well defined theory of chemical reactions is required before analyzing solvent effects on this special type of solute. The transition state theory has had an enormous influence in the development of modern chemistry [32-37]. Quantum mechanical theories that go beyond the classical statistical mechanics theory of absolute rate have been developed by several authors [36,38,39], However, there are still compelling motivations to formulate an alternate approach to the quantum theory that goes beyond a theory of reaction rates. In this paper, a particular theory of chemical reactions is elaborated. In this theoretical scheme, solvent effects at the thermodynamic and quantum mechanical level can be treated with a fair degree of generality. The theory can be related to modern versions of the Marcus theory of electron transfer [19,40,41] but there is no... [Pg.284]

It is appropriate to point out here just why it is not valid to assume (as is commonly done) that throughout the propagation step a paired cation will remain paired and that the resulting newly formed carbenium ion will therefore start its life paired (see, e.g., Mayr et al. [13]). On the contrary, if we follow the assumption made by the founders of Transition State Theory that the transition state can be treated as a thermodynamically stable species, it follows that because in the transition state the positive charge is less concentrated than in the ground state and because therefore the Coulombic force holding... [Pg.595]

Fig. 15 A thermodynamic cycle linked to transition state theory gives an equation relating the enhancement ratio for a biocatalysed process to the ratio of equilibrium constants for the complex between the biocatalyst and (i) substrate and (ii) the transition state for the reaction. These two values can be estimated as Km and K, for... Fig. 15 A thermodynamic cycle linked to transition state theory gives an equation relating the enhancement ratio for a biocatalysed process to the ratio of equilibrium constants for the complex between the biocatalyst and (i) substrate and (ii) the transition state for the reaction. These two values can be estimated as Km and K, for...
Transition state theory, a quasi-thermodynamic/statistical mechanical approach to the theory of reaction rates was developed in the early 1930s by a number of workers including H. Eyring, E. R Wigner, and J. C. Polanyi and was very quickly applied to the consideration of isotope effects on rates of simple molecular reactions. [Pg.33]

Isotope effects on rates (so-called kinetic isotope effects, KIE s) of specific reactions will be discussed in detail in a later chapter. The most frequently employed formalism used to discuss KIE s is based on the activated complex (transition state) theory of chemical kinetics and is analogous to the theory of isotope effects on thermodynamic equilibria discussed in this chapter. It is thus appropriate to discuss this theory here. [Pg.117]


See other pages where Transition-state theory thermodynamics is mentioned: [Pg.311]    [Pg.685]    [Pg.685]    [Pg.740]    [Pg.740]    [Pg.740]    [Pg.745]    [Pg.785]    [Pg.311]    [Pg.685]    [Pg.685]    [Pg.740]    [Pg.740]    [Pg.740]    [Pg.745]    [Pg.785]    [Pg.390]    [Pg.211]    [Pg.396]    [Pg.111]    [Pg.3]    [Pg.288]    [Pg.112]    [Pg.118]    [Pg.118]    [Pg.30]    [Pg.42]    [Pg.47]    [Pg.146]    [Pg.357]    [Pg.554]    [Pg.10]   
See also in sourсe #XX -- [ Pg.207 ]

See also in sourсe #XX -- [ Pg.207 ]




SEARCH



State, thermodynamic

Thermodynamic formulation of transition state theory

Thermodynamic theory

Thermodynamics transitions

Transition state theory thermodynamic analysis

Transition state theory thermodynamic formulation

Transition state theory thermodynamic functions

Transition-state theory Thermodynamic

Transition-state theory Thermodynamic

Transition-state theory thermodynamic parameters

© 2024 chempedia.info