Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition solvent role

For this scheme we again obtain Eq. (5-58), because the water (solvent) concentration is essentially constant and so is absorbed into the rate constant. Thus, the rds is bimolecular, but the rate equation is first-order the role of the solvent in the transition state is not evident from the rate equation. [Pg.217]

The ortho effect may consist of several components. The normal electronic effect may receive contributions from inductive and resonance factors, just as with tneta and para substituents. There may also be a proximity or field electronic effect that operates directly between the substituent and the reaction site. In addition there may exist a true steric effect, as a result of the space-filling nature of the substituent (itself ultimately an electronic effect). Finally it is possible that non-covalent interactions, such as hydrogen bonding or charge transfer, may take place. The role of the solvent in both the initial state and the transition state may be different in the presence of ortho substitution. Many attempts have been made to separate these several effects. For example. Farthing and Nam defined an ortho substituent constant in the usual way by = log (K/K ) for the ionization of benzoic acids, postulating that includes both electronic and steric components. They assumed that the electronic portion of the ortho effect is identical to the para effect, writing CTe = o-p, and that the steric component is equal to the difference between the total effect and the electronic effect, or cts = cr — cte- They then used a multiple LFER to correlate data for orrAo-substituted reactants. [Pg.336]

Pertiaps the most obvious experiment is to compare the rate of a reaction in the presence of a solvent and in the absence of the solvent (i.e., in the gas phase). This has long been possible for reactions proceeding homolytically, in which little charge separation occurs in the transition state for such reactions the rates in the gas phase and in the solution phase are similar. Very recently it has become possible to examine polar reactions in the gas phase, and the outcome is greatly different, with the gas-phase reactivity being as much as 10 greater than the reactivity in polar solvents. This reduced reactivity in solvents is ascribed to inhibition by solvation in such reactions the role of the solvent clearly overwhelms the intrinsic reactivity of the reactants. Gas-phase kinetic studies are a powerful means for interpreting the reaction coordinate at a molecular level. [Pg.385]

Ionic liquids with wealdy coordinating, inert anions (such as [(CF3S02)2N] , [BFJ , or [PFg] under anhydrous conditions) and inert cations (cations that do not coordinate to the catalyst themselves, nor form species that coordinate to the catalyst under the reaction conditions used) can be looked on as innocent solvents in transition metal catalysis. In these cases, the role of the ionic liquid is solely to provide a more or less polar, more or less weakly coordinating medium for the transition metal catalyst, but which additionally offers special solubility for feedstock and products. [Pg.221]

PEO is found to be an ideal solvent for alkali-metal, alkaline-earth metal, transition-metal, lanthanide, and rare-earth metal cations. Its solvating properties parallel those of water, since water and ethers have very similar donicites and polarizabilities. Unlike water, ethers are unable to solvate the anion, which consequently plays an important role in polyether polymer-electrolyte formation. [Pg.502]

Coordination chemistry of certain transition metal ions the role of the solvent. V. Gutmann, Coord. Chem. Rev., 1967, 2,239-256 (39). [Pg.35]

At its best, the study of solvent kies by the formalism given can be used to learn about proton content and activation in the transition state. For this reason it is known as the proton inventory technique. The kinetics of decay of the lowest-energy electronic excited state of 7-azaindole illustrates the technique.25 Laser flash photolysis techniques (Section 11.6) were used to evaluate the rate constant for this very fast reaction. From the results it was suggested that, in alcohol, a double-proton tautomerism was mediated by a single molecule of solvent such that only two protons are involved in the transition state. In water, on the other hand, the excited state tautomerism is frustrated such that two water molecules may play separate roles. Diagrams for possible transition states that can be suggested from the data are shown, where of course any of the H s might be D s. [Pg.219]

Evidence that the cation plays an essential role, at least in some cases, is that when the Li was effectively removed from L1A1H4 (by the addition of a crown ether), the reaction did not take place. The complex 19 must now be hydrolyzed to the alcohol. For NaBH4 the Na" " does not seem to participate in the transition state, but kinetic evidence shows that an OR group from the solvent does participate and remains attached to the boron... [Pg.1202]

Katsumura, Kitaura and their coworkers [74] found and discussed the high reactivity of vinylic vs allylic hydrogen in the photosensitized reactions of twisted 1,3-dienes in terms of the interaction in the perepoxide structure. Yoshioka and coworkers [75] investigated the effects of solvent polarity on the product distribution in the reaction of singlet oxygen with enolic tautomers of 1,3-diketones and discussed the role of the perepoxide intermediate or the perepoxide-Uke transition state to explain their results. A recent review of the ene reactions of was based on the significant intervention of the perepoxide structure [76], which can be taken as a quasi-intermediate. [Pg.38]

The activity of transition metal catalysts depends on both the metal and the ligands. In addition, solvent effects, etc. can play a role. Table 3.10 shows examples of transition- metal catalysts with the reactions for which they are active (Farkas, 1986). [Pg.112]

The development of comprehensive models for transition metal carbonyl photochemistry requires that three types of data be obtained. First, information on the dynamics of the photochemical event is needed. Which reactant electronic states are involved What is the role of radiationless transitions Second, what are the primary photoproducts Are they stable with respect to unimolecular decay Can the unsaturated species produced by photolysis be spectroscopically characterized in the absence of solvent Finally, we require thermochemical and kinetic data i.e. metal-ligand bond dissociation energies and association rate constants. We describe below how such data is being obtained in our laboratory. [Pg.104]

In adsorption, the solvent always plays a double role, affecting both lateral interactions between the adsorbate molecules and determining the effective interaction between the surface and the adsorbate. For polymers, this means that they adsorb strongly from some solvents, whereas from others they do not at all. As a consequence, mixed solvents can give rise to an adsorption/desorption transition the polymer is desorbed by a so-called displacer. [Pg.53]


See other pages where Transition solvent role is mentioned: [Pg.279]    [Pg.51]    [Pg.279]    [Pg.842]    [Pg.2364]    [Pg.2593]    [Pg.3033]    [Pg.439]    [Pg.383]    [Pg.302]    [Pg.326]    [Pg.309]    [Pg.309]    [Pg.422]    [Pg.10]    [Pg.533]    [Pg.6]    [Pg.28]    [Pg.191]    [Pg.117]    [Pg.405]    [Pg.107]    [Pg.234]    [Pg.121]    [Pg.74]    [Pg.209]    [Pg.354]    [Pg.357]    [Pg.323]    [Pg.39]    [Pg.636]    [Pg.472]    [Pg.210]    [Pg.175]    [Pg.206]    [Pg.207]   
See also in sourсe #XX -- [ Pg.221 , Pg.222 , Pg.223 ]




SEARCH



Solvent role

© 2024 chempedia.info