Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition open shell

We have encountered oscillating and random behavior in the convergence of open-shell transition metal compounds, but have never tried to determine if the random values were bounded. A Lorenz attractor behavior has been observed in a hypervalent system. Which type of nonlinear behavior is observed depends on several factors the SCF equations themselves, the constants in those equations, and the initial guess. [Pg.194]

Nearly every technical difficulty known is routinely encountered in transition metal calculations. Calculations on open-shell compounds encounter problems due to spin contamination and experience more problems with SCF convergence. For the heavier transition metals, relativistic effects are significant. Many transition metals compounds require correlation even to obtain results that are qualitatively correct. Compounds with low-lying excited states are difficult to converge and require additional work to ensure that the desired states are being computed. Metals also present additional problems in parameterizing semi-empirical and molecular mechanics methods. [Pg.286]

Many transition metal systems are open-shell systems. Due to the presence of low-energy excited states, it is very common to experience problems with spin contamination of unrestricted wave functions. Quite often, spin projection and annihilation techniques are not sufficient to correct the large amount of spin contamination. Because of this, restricted open-shell calculations are more reliable than unrestricted calculations for metal system. Spin contamination is discussed in Chapter 27. [Pg.288]

This program is excellent for high-accuracy and sophisticated ah initio calculations. It is ideal for technically difficult problems, such as electronic excited states, open-shell systems, transition metals, and relativistic corrections. It is a good program if the user is willing to learn to use the more sophisticated ah initio techniques. [Pg.339]

Here is the input file for an optimization of the transition structure for the reaction H3CO —t H2COH (a simple 1,2 hydrogen shift reaction). We specify a UHF calculation (open shell) since the molecular system is a doublet ... [Pg.46]

A central theme in our approach, which we believe to be different from those of others, is to focus on the changing chemistry associated with higher, middle and lower oxidation state compounds. The chemical stability of radical species and open-shell Werner-type complexes, on the one hand, and the governance of the 18-electron rule, on the other, are presented as consequences of the changing nature of the valence shell in transition-metal species of different oxidation state. [Pg.218]

This article is an attempt to review possibilities in a quantum chemical treatment of open-shell systems. In order to cut down the extent of this review, we disregard some problems, especially those concerning macromolecules, polymerization reactions, and open-shell transition-metal complexes. Electron spin resonance is mentioned only briefly, because it has been a topic of many reviews. [Pg.328]

Figure 12. Electronic spectra and the results of open-shell PPP-like semiempirical calculations for radical ions. The vertical lines represent the allowed transitions, the wavy lines with arrows the forbidden ones. The right side scales denote the calculated spectral intensities, where f stands for the oscillator strength. Top left the absorption curve (146) redrawn to the log e vs. 0 (cm ) form calculations are taken from (59). Top right taken from (11). Bottom left taken from (143). Bottom right taken from (136), the absorption curve redrawn to the log e vs, 0 (cm" ) form. Figure 12. Electronic spectra and the results of open-shell PPP-like semiempirical calculations for radical ions. The vertical lines represent the allowed transitions, the wavy lines with arrows the forbidden ones. The right side scales denote the calculated spectral intensities, where f stands for the oscillator strength. Top left the absorption curve (146) redrawn to the log e vs. 0 (cm ) form calculations are taken from (59). Top right taken from (11). Bottom left taken from (143). Bottom right taken from (136), the absorption curve redrawn to the log e vs, 0 (cm" ) form.
Figure 14. Absorption curves of the tetracene radical ions (157) and results of the semiempirical open-shell PPP-like calculations (59). The latter are indicated by vertical lines (allowed transitions) and by wavy lines with arrows (forbidden transitions) f stands for theoretical oscillator strength. Figure 14. Absorption curves of the tetracene radical ions (157) and results of the semiempirical open-shell PPP-like calculations (59). The latter are indicated by vertical lines (allowed transitions) and by wavy lines with arrows (forbidden transitions) f stands for theoretical oscillator strength.
However at elevated temperatures (T2 > Tj, Figure 9) the increased entropy (TAS) associated with an open shell structure overcomes the ti —ti enthalpy of dimerisation associated with these distorted Ti-stacked structures and they undergo a solid-solid phase transition (Figure 9) The high temperature phase is typically associated with a Ti-stack of regularly spaced radicals which exhibit longer inter-radical S- S contacts (ca. 3.7 A). This process was first observed by Oakley60 in the DTA radical thiadiazolopyrazine-l,3,2-dithiazolyl 26, and a number of other derivatives have subsequently been identified which exhibit similar behaviour. These are compiled in Table 1. [Pg.748]

Both l3A"-4b and 23A"-4b are predicted to be minima on the potential surface at the CASSCF level.61 This is in contrast with the situation for 4a, where one triplet state is calculated to be a transition state for pseudorotation of the other.55-57 A derivative of triplet 4b has been implicated in solution trapping experiments,49 but there have been no reports of the direct observation of 4b. Facile intersystem crossing from the triplet ground state (13A") to the open-shell singlet state ( A"), followed by vibrational relaxation to one of the enantiomers of 3b (Fig. 12), would be expected to rapidly depopulate the 13A" state of 4b. Thus, direct detection of triplet 4b may prove to be much more difficult than detection of 4a was.lla... [Pg.234]

Table 4.6. Geometries and NBO descriptors 0/MH2 and MH3 metal hydrides of the third transition series of various spin multiplicities (IS + I), illustrating the correlations of metal charge (Qu) with metal hybrid d character (%d, taken as the average of a and 3 hybrids for open-shell species), bond length (Ruw) and angle (9hmh)> and average absolute deviation (Dev. = average %mh — 90" ), from idealized covalent geometry... Table 4.6. Geometries and NBO descriptors 0/MH2 and MH3 metal hydrides of the third transition series of various spin multiplicities (IS + I), illustrating the correlations of metal charge (Qu) with metal hybrid d character (%d, taken as the average of a and 3 hybrids for open-shell species), bond length (Ruw) and angle (9hmh)> and average absolute deviation (Dev. = average %mh — 90" ), from idealized covalent geometry...
Already in the early twentieth century it was realized that definitions such as (D1) do not adequately cover all units of interest in chemistry. Thus, by 1902 Werner had demonstrated (Section 4.5.1) that numerous covalently saturated ligand (L) species (L = CO, NH3, H20, etc.) could exist both as free molecular species and in coordinated form as components of transition-metal complexes ML with open-shell metals M,... [Pg.580]


See other pages where Transition open shell is mentioned: [Pg.287]    [Pg.874]    [Pg.2447]    [Pg.339]    [Pg.130]    [Pg.416]    [Pg.125]    [Pg.361]    [Pg.334]    [Pg.356]    [Pg.185]    [Pg.37]    [Pg.174]    [Pg.181]    [Pg.61]    [Pg.6]    [Pg.99]    [Pg.135]    [Pg.147]    [Pg.152]    [Pg.168]    [Pg.173]    [Pg.176]    [Pg.212]    [Pg.269]    [Pg.340]    [Pg.141]    [Pg.147]    [Pg.90]    [Pg.240]    [Pg.166]    [Pg.167]    [Pg.242]    [Pg.76]    [Pg.395]    [Pg.89]   
See also in sourсe #XX -- [ Pg.9 ]




SEARCH



Bonding in Open-Shell Transition-Metal Complexes

Open shell

Open shell transition local spin

Open transition

Open-shell transition metal ions

Open-shell transition-metal complexe

Open-shell transition-metal complexe molecules

Semiempirical method for transition metal complexes with open (-shells

© 2024 chempedia.info