Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal based polymers

Ionic liquids have already been demonstrated to be effective membrane materials for gas separation when supported within a porous polymer support. However, supported ionic liquid membranes offer another versatile approach by which to perform two-phase catalysis. This technology combines some of the advantages of the ionic liquid as a catalyst solvent with the ruggedness of the ionic liquid-polymer gels. Transition metal complexes based on palladium or rhodium have been incorporated into gas-permeable polymer gels composed of [BMIM][PFg] and poly(vinyli-dene fluoride)-hexafluoropropylene copolymer and have been used to investigate the hydrogenation of propene [21]. [Pg.266]

Various transition metal catalysts, including those based on Rh, Pt, Pd, Co, and Ti, have been bound to polymer supports—mainly through the phosphenation reaction described by Eq. 9-65 for polystyrene but also including other polymers, such as silica and cellulose, and also through other reactions (e.g., alkylation of titanocene by chloromethylated polystyrene). Transition-metal polymer catalysts have been studied in hydrogenation, hydroformylation, and hydrosilation reactions [Chauvin et al., 1977 Mathur et al., 1980]. [Pg.769]

A patent by A. W. Anderson et al. (Du Pont) disclosed the first transition metal catalyzed polymerization of a cyclic olefin in 1955 [1]. Subsequent to the discovery of Ziegler-Natta polymerization [2] norbornene was found to polymerize in the presence of the catalyst systems TiCl /EtMgBr. Eleuterio [3 a] and Truett et al. [3 b] obtained polynorbornene by using transition metal catalysts based on Mo and Ti, respectively. IR-studies and ozonolysis of the polymer revealed the presence of carbon-carbon double bonds, indicating that polymerization had occured by unexpected ring opening Eq. 1 [3]. [Pg.48]

A new addition to the array of polymer synthesis methodologies is ring-opening metathesis polymerization (ROMP). Although the basic reaction had been known for some time, it was not until the development of new transition metal catalysts based on work by Schrock and Grubbs (Chapter 12), that the methodology became practical (Figure 13.18). Typically the reaction requires strained olefins such as norbornene so that relief of strain... [Pg.798]

Two different classes of organoiron polymers are the focus of this voliune ferrocene-based macromolecules and polymers containing cationic arene cyclopen-tadienyliron complexes incorporated into their structures. Ferrocene-based polymers are the best-examined class of organo-transition-metal polymer. Since they were first examined in the 1950s, this class of organoiron polymer has been synthesized by almost all imaginable polymerization techniques. [Pg.298]

ATRP is analogous to atom transfer radical addition reactions which are well known in the field of organic chemistry as Kharasch addition reactions [83]. These methods often utilize a transition metal complex based on copper, iron, ruthenium, and nickel to abstract a halogen and produce a carbon-based radical [84, 85]. Since the first reports in 1995 of living radical polymerizations based on copper(I) for styrene and methyl methacrylate [86] and ruthenium(II) for methyl methacrylate [87], this technique has become widely utilized in polymer science. [Pg.37]

Extensive efforts have been made to develop catalyst systems to control the stereochemistry, addition site, and other properties of the final polymers. Among the most prominant ones are transition metal-based catalysts including Ziegler or Ziegler-Natta type catalysts. The metals most frequentiy studied are Ti (203,204), Mo (205), Co (206-208), Cr (206-208), Ni (209,210), V (205), Nd (211-215), and other lanthanides (216). Of these, Ti, Co, and Ni complexes have been used commercially. It has long been recognized that by varying the catalyst compositions, the trans/cis ratio for 1,4-additions can be controlled quite selectively (204). Catalysts have also been developed to control the ratio of 1,4- to 1,2-additions within the polymers (203). [Pg.346]

Cocatalysts, such as diethylzinc and triethylboron, can be used to alter the molecular-weight distribution of the polymer (89). The same effect can also be had by varying the transition metal in the catalyst chromium-based catalyst systems produce polyethylenes with intermediate or broad molecular-weight distributions, but titanium catalysts tend to give rather narrow molecular-weight distributions. [Pg.203]

Between the 1920s when the initial commercial development of mbbery elastomers based on 1,3-dienes began (5—7), and 1955 when transition metal catalysts were fkst used to prepare synthetic polyisoprene, researchers in the U.S. and Europe developed emulsion polybutadiene and styrene—butadiene copolymers as substitutes for natural mbber. However, the tire properties of these polymers were inferior to natural mbber compounds. In seeking to improve the synthetic material properties, research was conducted in many laboratories worldwide, especially in the U.S. under the Rubber Reserve Program. [Pg.530]

Mention has already been made in this chapter of metallocene-catalysed polyethylene (see also Chapter 2). Such metallocene catalysts are transition metal compounds, usually zirconium or titanium. Incorporated into a cyclopentadiene-based structure. During the late 1990s several systems were developed where the new catalysts could be employed in existing polymerisation processes for producing LLDPE-type polymers. These include high pressure autoclave and... [Pg.211]

The next major commodity plastic worth discussing is polypropylene. Polypropylene is a thermoplastic, crystalline resin. Its production technology is based on Ziegler s discovery in 1953 of metal alkyl-transition metal halide olefin polymerization catalysts. These are heterogeneous coordination systems that produce resin by stereo specific polymerization of propylene. Stereoregular polymers characteristically have monomeric units arranged in orderly periodic steric configuration. [Pg.237]

The formation of high polymers of olefins in the presence of titanium halogenides with no specially added organometallic co-catalysts was discovered long ago [see (147), and the references therein], A complete description of various alkyl-free polymerization catalysts based on the use of transition metal chlorides may be found in the review by Boor (17), where a comparison of these catalysts with traditional two-component systems is given. [Pg.192]

Despite the difference in composition of various olefin polymerization catalysts the problems of the mechanism of their action have much in common. The difference between one-component and traditional Ziegler-Natta two-component catalysts seems to exist only at the stage of genesis of the propagation centers, while the mechanism of the formation of a polymer chain on the propagation center formed has many common basic features for all the catalytic systems based on transition metal compounds. [Pg.202]

Olefin polymerization by catalysts based on transition metal halogenides is usually designated as coordinated anionic, after Natta (194). It is believed that the active metal-carbon bond in Ziegler-Natta catalysts is polarized following the type M+ - C. The polarization of the active metal-carbon bond should influence the route of its decomposition by some compounds ( polar-type inhibitors), e.g. by alcohols. When studying polymerization by Ziegler-Natta catalysts tritiated alcohols were used in many works to determine the number of metal-polymer bonds. However, as it was noted above (see Section IV), in two-component systems the polarization of the active bond cannot be judged by the results of the treatment of the system by alcohol, as the radioactivity of the polymer thus obtained results mainly from the decomposition of the aluminum-polymer bonds. [Pg.211]

Functionalized polyethylene would be of great industrial importance, and if synthetic methods to control the microstructure of functionalized polymers using transition-metal-based catalysis are developed, it would significantly broaden the utility and range of properties of this class of polymers. Recent progress in the field of late transition metal chemistry, such as Brookliart s use of nickel-based diimine catalysts, has enabled the copolymerization of ethylene with functional a-olefins.29 However, these systems incorporate functionalized olefins randomly and with limited quantity (mol percent) into the polymer backbone. [Pg.459]


See other pages where Transition metal based polymers is mentioned: [Pg.196]    [Pg.452]    [Pg.68]    [Pg.139]    [Pg.617]    [Pg.158]    [Pg.45]    [Pg.477]    [Pg.494]    [Pg.340]    [Pg.786]    [Pg.2180]    [Pg.46]    [Pg.909]    [Pg.131]    [Pg.218]    [Pg.382]    [Pg.283]    [Pg.848]    [Pg.381]    [Pg.316]    [Pg.289]    [Pg.432]    [Pg.433]    [Pg.194]   
See also in sourсe #XX -- [ Pg.109 ]




SEARCH



Polymer , transition metal

Transition polymer

© 2024 chempedia.info