Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide transition metal complexes

With an atomic number of 28 nickel has the electron conflguration [Ar]4s 3c (ten valence electrons) The 18 electron rule is satisfied by adding to these ten the eight elec Irons from four carbon monoxide ligands A useful point to remember about the 18 electron rule when we discuss some reactions of transition metal complexes is that if the number is less than 18 the metal is considered coordinatively unsaturated and can accept additional ligands... [Pg.608]

Carbon monoxide [630-08-0] (qv), CO, the most important 7T-acceptor ligand, forms a host of neutral, anionic, and cationic transition-metal complexes. There is at least one known type of carbonyl derivative for every transition metal, as well as evidence supporting the existence of the carbonyls of some lanthanides (qv) and actinides (1) (see AcTINIDES AND THANSACTINIDES COORDINATION COMPOUNDS). [Pg.62]

The lobes of electron density outside the C-O vector thus offer cr-donor lone-pair character. Surprisingly, carbon monoxide does not form particularly stable complexes with BF3 or with main group metals such as potassium or magnesium. Yet transition-metal complexes with carbon monoxide are known by the thousand. In all cases, the CO ligands are bound to the metal through the carbon atom and the complexes are called carbonyls. Furthermore, the metals occur most usually in low formal oxidation states. Dewar, Chatt and Duncanson have described a bonding scheme for the metal - CO interaction that successfully accounts for the formation and properties of these transition-metal carbonyls. [Pg.122]

The field of transition metal complexes of isocyanides developed slowly over more than a century to a respectable subarea in coordination chemistry, and in the process seems to have attracted very little attention. Even the remarkable resurgence of transition metal organometallic chemistry in the last 20 years, and the realization that isocyanides and carbon monoxide should be quite similar as ligand groups in organometallic complexes, did not initiate an extensive development of this area of chemistry. Only in the last several years has this potentially important subject begun to receive the attention it would seem to deserve. [Pg.21]

A60. J. P. Candlin, K. A. Taylor, and D. T. Thompson, "Reactions of Transition-Metal Complexes. Elsevier, Amsterdam, 1968. A review of types of reactions of metal complexes (e.g., substitution, combination, redox) reactions with various reagents (e.g., hydrocarbons, halides, carbon monoxide, and isonitrile) and preparation of new stabilised organic systems (e.g., metallocenes, carbenes). Intended for research workers, consequently written at a fairly high level, with emphasis on organometallics. A61. H. J. Keller, NMR-Untersuchungen an Komplexverbindungen. Springer, Berlin, 1970. Expansion of review article 37.1. [Pg.448]

Hydrogenation Reactions Catalyzed by Transition Metal Complexes, 17, 319 Infrared Intensities of Metal Carbonyl Stretching Vibrations, 10, 199 Infrared and Raman Studies of ir-Complexes, 1, 239 Insertion Reactions of Compounds of Metals and Metalloids, 5, 225 Insertion Reactions of Transition Metal-Carbon Bonded Compounds 1. Carbon Monoxide Insertion, 11, 87... [Pg.509]

Although this classic picture evolved from "soft, mononuclear transition metal complexes suffices to explain a great deal of carbon monoxide chemistry, it is not clear that it is complete or accurate for understanding processes whereby CO is reduced, deoxygenated, and/or polymerized to form methane, long-chain hydrocarbons, alcohols, and other oxocarbons, especially in cases where heterogeneous catalysts or "hard" metals are involved (6, 7, ,9,J 0). This deficiency of information has led to the search for new modes of carbon monoxide reactivity and to attempts to understand carbon monoxide chemistry in nontraditional environments ... [Pg.59]

Recent developments have impressively enlarged the scope of Pauson-Khand reactions. Besides the elaboration of strategies for the enantioselective synthesis of cyclopentenones, it is often possible to perform PKR efficiently with a catalytic amount of a late transition metal complex. In general, different transition metal sources, e.g., Co, Rh, Ir, and Ti, can be applied in these reactions. Actual achievements demonstrate the possibility of replacing external carbon monoxide by transfer carbonylations. This procedure will surely encourage synthetic chemists to use the potential of the PKR more often in organic synthesis. However, apart from academic research, industrial applications of this methodology are still awaited. [Pg.183]

In general the activity of transition metal complexes for alkene isomerisation is low in the presence of carbon monoxide, but HCo(CO)4 is an exception to this rule. Depending on conditions, full equilibration of the alkene isomers is obtained. [Pg.129]

In homogeneous catalytic systems we witnessed a new process for the production of acetic acid from methanol and carbon monoxide using a transition metal complex, thus displacing the earlier process employing ethylene as the starting material. The use of immobilized enzymes makes possible the commercial conversion of glucose into fructose. [Pg.380]

The problem of terminal addition (anti-Markovnikov) of HCN to isolated unactivated double bonds was not solved until carbon monoxide-free, low-valent transition metal complexes became available. During the mid 1960s, W. C. Drinkard allowed 1-hexene to react with HCN in the presence of tetrakis(triethylphosphite)nickel(0) and the resulting product mixture contained a small amount of the terminal addition product n-heptanenitrile, and Drinkard and Lindsey found that the reaction with 3-pentenenitrile produced ADN (7). [Pg.3]

We have studied the carbonylation of various allylic ethers in the presence of transition metal complexes (ref. 5) with special emphasis on the reaction of methoxyoctadienes 1,2 catalyzed by palladium complexes (ref. 6). With bis[(methallyl)chloropalladium(II)], the best ether conversion (97%) and methyl nona-3,8-dienoate 3 yield (95%) are obtained under 30 bar of carbon monoxide (eqn. 1). [Pg.263]

A very important reaction of alkyl transition-metal complexes with carbon monoxide results in formation of an acyl derivative, as can be seen for H... [Pg.1514]

The following discussion deals not only with this reaction, but related reactions in which a transition metal complex achieves the addition of carbon monoxide to an alkene or alkyne to yield carboxylic acids and their derivatives. These reactions take place either by the insertion of an alkene (or alkyne) into a metal-hydride bond (equation 1) or into a metal-carboxylate bond (equation 2) as the initial key step. Subsequent steps include carbonyl insertion reactions, metal-acyl hydrogenolysis or solvolysis and metal-carbon bond protonolysis. [Pg.913]

The rapid development of the chemistry of transition metal complexes containing terminal carbene (A) or carbyne (B) ligands (7) has been followed more recently by much research centered on bridged methylene compounds (C) (2). The importance of /t-methylidyne complexes, whether in recently established binuclear examples (D), the well-known trinuclear derivatives (E), or the unusual complexes (F), has also become apparent. All are based on one-carbon (C,) fragments, and considerable interest is centered on their possible significance as models for intermediates in surface-catalyzed reactions between carbon monoxide and hydrogen (Fischer -Tropsch reactions) and related processes. These topics have been extensively ... [Pg.60]

There have been several recent reports of the reduction of carbon dioxide to carbon monoxide by transition metal complexes. Maher and Cooper (2/) have reported that several metal carbonyl dianions can effect the disproportionation of C02 to metal bound carbon monoxide [Eq. (37)] with Li2C03... [Pg.154]

Another important reaction typically proceeding in transition metal complexes is the insertion reaction. Carbon monoxide readily undergoes this process. Therefore, the insertion reaction is extremely important in organoiron chemistry for carbonylation of alkyl groups to aldehydes, ketones (compare Scheme 1.2) or carboxylic acid derivatives. Industrially important catalytic processes based on insertion reactions are hydroformylation and alkene polymerization. [Pg.3]


See other pages where Carbon monoxide transition metal complexes is mentioned: [Pg.5]    [Pg.608]    [Pg.608]    [Pg.76]    [Pg.644]    [Pg.142]    [Pg.106]    [Pg.10]    [Pg.65]    [Pg.195]    [Pg.162]    [Pg.176]    [Pg.182]    [Pg.234]    [Pg.3]    [Pg.306]    [Pg.119]    [Pg.11]    [Pg.615]    [Pg.80]    [Pg.145]    [Pg.230]    [Pg.303]    [Pg.905]    [Pg.106]    [Pg.98]   
See also in sourсe #XX -- [ Pg.3 ]

See also in sourсe #XX -- [ Pg.3 ]




SEARCH



1 monoxide complexes

Carbon complex

Carbon monoxide-metal complexes

Carbonate complexation

Carbonate) complexes

Metal carbon monoxide

Metal monoxides

Metal-carbon complexes

Nucleophilic Attack on Transition Metal Complexes of Carbon Monoxide and Isonitriles

Transition metal monoxides

© 2024 chempedia.info