Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chemisorption transition metals

We consider first some experimental observations. In general, the initial heats of adsorption on metals tend to follow a common pattern, similar for such common adsorbates as hydrogen, nitrogen, ammonia, carbon monoxide, and ethylene. The usual order of decreasing Q values is Ta > W > Cr > Fe > Ni > Rh > Cu > Au a traditional illustration may be found in Refs. 81, 84, and 165. It appears, first, that transition metals are the most active ones in chemisorption and, second, that the activity correlates with the percent of d character in the metallic bond. What appears to be involved is the ability of a metal to use d orbitals in forming an adsorption bond. An old but still illustrative example is shown in Fig. XVIII-17, for the case of ethylene hydrogenation. [Pg.715]

The saturation coverage during chemisorption on a clean transition-metal surface is controlled by the fonnation of a chemical bond at a specific site [5] and not necessarily by the area of the molecule. In addition, in this case, the heat of chemisorption of the first monolayer is substantially higher than for the second and subsequent layers where adsorption is via weaker van der Waals interactions. Chemisorption is often usefLil for measuring the area of a specific component of a multi-component surface, for example, the area of small metal particles adsorbed onto a high-surface-area support [6], but not for measuring the total area of the sample. Surface areas measured using this method are specific to the molecule that chemisorbs on the surface. Carbon monoxide titration is therefore often used to define the number of sites available on a supported metal catalyst. In order to measure the total surface area, adsorbates must be selected that interact relatively weakly with the substrate so that the area occupied by each adsorbent is dominated by intennolecular interactions and the area occupied by each molecule is approximately defined by van der Waals radii. This... [Pg.1869]

Our intention is to give a brief survey of advanced theoretical methods used to detennine the electronic and geometric stmcture of solids and surfaces. The electronic stmcture encompasses the energies and wavefunctions (and other properties derived from them) of the electronic states in solids, while the geometric stmcture refers to the equilibrium atomic positions. Quantities that can be derived from the electronic stmcture calculations include the electronic (electron energies, charge densities), vibrational (phonon spectra), stmctiiral (lattice constants, equilibrium stmctiires), mechanical (bulk moduli, elastic constants) and optical (absorption, transmission) properties of crystals. We will also report on teclmiques used to study solid surfaces, with particular examples drawn from chemisorption on transition metal surfaces. [Pg.2201]

In the final section, we will survey the different theoretical approaches for the treatment of adsorbed molecules on surfaces, taking the chemisorption on transition metal surfaces, a particularly difficult to treat yet extremely relevant surface problem [1], as an example. Wliile solid state approaches such as DFT are often used, hybrid methods are also advantageous. Of particular importance in this area is the idea of embedding, where a small cluster of surface atoms around the adsorbate is treated with more care than the surroundmg region. The advantages and disadvantages of the approaches are discussed. [Pg.2202]

Hydrogen gas chemisorbs on the surface of many metals in an important step for many catalytic reactions. A method for estimating the heat of hydrogen chemisorption on transition metals has been developed (67). These values and metal—hydrogen bond energies for 21 transition metals are available (67). [Pg.414]

R. J. Kokes and A. L. Dent Chemisorption Complexes and Their Role in Catalytic Reactions on Transition Metals Z. Knor... [Pg.427]

The temperature regimes for the stability of intermediates is different for various transition metals. For example on Fe(lll) the adsorbed ethylene decomposes partially at 200 K, while the conversion to surface carbon is complete at 370 K. Similarly, on nickel faces molecular chemisorption of ethylene is restricted to temperatures below ambient. At temperatures between approximately 290 K and 450 K ethylene chemisorption on nickel... [Pg.53]

It is important to notice that the work function, , of a given solid surface changes significantly with chemisorption. Thus oxygen chemisorption on transition metal surfaces causes up to 1 eV increase in while alkali chemisorption on transition metal surfaces causes up to 3 eV decrease in . In general electronegative, i.e. electron acceptor adsorbates cause an increase in 0 while electropositive, i.e. electron donor adsorbates cause a decrease in 0. Note that in the former case the dipole vector P formed by the adsorbate and the surface points to the vacuum while in the latter case P points to the surface (Fig. 4.20). [Pg.138]

The chemisorptive bond is a chemical bond. The nature of this bond can be covalent or can have a strong ionic character. The formation of the chemisorptive bond in general involves either donation of electrons from the adsorbate to the metal (donation) or donation of electrons from the metal to the adsorbate (backdonation).2 In the former case the adsorbate is termed electron donor, in the latter case it is termed electron acceptor.3 In many cases both donation and backdonation of electrons is involved in chemisorptive bond formation and the adsorbate behaves both as an electron acceptor and as an electron donor. A typical example is the chemisorption of CO on transition metals where, according to the model first described by Blyholder,4 the chemisorptive bond formation involves both donation of electrons from the 7t orbitals of CO to the metal and backdonation of electrons from the metal to the antibonding n orbitals of CO. [Pg.279]

Equation (6.20) and the semiquantitative trends it conveys, can be rationalized not only on the basis of lateral coadsorbate interactions (section 4.5.9.2) and rigorous quantum mechanical calculations on clusters89 (which have shown that 80% of the repulsive O2 - O interaction is indeed an electrostatic (Stark) through-the-vacuum interaction) but also by considering the band structure of a transition metal (Fig. 6.14) and the changes induced by varying O (or EF) on the chemisorption of a molecule such as CO which exhibits both electron acceptor and electron donor characteristics. This example has been adapted from some rigorous recent quantum mechanical calculations of Koper and van Santen.98... [Pg.301]

Figure 6.14. CO chemisorption on a transition metal. Molecular orbitals and density of states before (a,b) and after (c and d) adsorption. Effect of varying 0 and EF on electron backdonation (c) and donation (d). Based on Fig. 4 of ref. 98. See text for discussion. Reprinted with permission from Elsevier Science. Figure 6.14. CO chemisorption on a transition metal. Molecular orbitals and density of states before (a,b) and after (c and d) adsorption. Effect of varying 0 and EF on electron backdonation (c) and donation (d). Based on Fig. 4 of ref. 98. See text for discussion. Reprinted with permission from Elsevier Science.
Figure 6.14d shows the electron donation interaction (electrons are transferred from the initially fully occupied 5a molecular orbitals to the Fermi level of the metal, thus this is an electron donation interaction). Blyholder was first to discuss that CO chemisorption on transition metal involves both donation and backdonation of electrons.4 We now know both experimentally7 and theoretically96,98 that the electron backdonation mechanism is usually predominant, so that CO behaves on most transition metal surfaces as an overall electron acceptor. [Pg.302]

Finally we look at the chemisorption of a molecule with a pair of bonding and antibonding orbitals on a transition metal (Fig. 6.25). This situation can be simply visualized with FI2, for which the bonding orbital contains two electrons and the antibonding orbital is empty, but other molecules can also be examined. In principle, we simply apply Section 6.4.2.2 twice, once to the bonding orbital, and once to the antibonding orbital of the molecule. This has been done in Fig. 6.25. [Pg.243]

If we restrict ourselves to the late transition metals the trends will, as for the CO chemisorption energy, be dominated by the interaction of the antibonding orbital with the d band and the leading term is... [Pg.257]

Looking at the trends in dissociation probability across the transition metal series, dissociation is favored towards the left, and associative chemisorption towards the right. This is nicely illustrated for CO on the 4d transition metals in Fig. 6.36, which shows how, for Pd and Ag, molecular adsorption of CO is more stable than adsorption of the dissociation products. Rhodium is a borderline case and to the left of rhodium dissociation is favored. Note that the heat of adsorption of the C and O atoms changes much more steeply across the periodic table than that for the CO molecule. A similar situation occurs with NO, which, however, is more reactive than CO, and hence barriers for dissociation are considerably lower for NO. [Pg.257]

The interaction of hydrogen (deuterium) molecules with a transition metal surface c an be conveniently described in terms of a Lennard--Jones potential energy diagram (Pig. 1). It cxxislsts of a shallcw molecular precursor well followed by a deep atomic chemisorption potential. Depending on their relative depths and positions the wells m or may not be separated by an activation energy barrier E as schematically Indicated by the dotted cur e in Fig. 1. [Pg.224]

Active catalyst sites can consist of a wide variety of species. Major examples are coordination complexes of transition metals, proton acceptors or donors in a solution, and defects at the surface of a metallic, oxidic, or sulphidic catalyst. Chemisorption is one of the most important techniques in catalyst characterization (Overbury et al., 1975 Bartley et al, 1988 Scholten et at, 1985 Van Delft et al, 1985 Weast, 1973 and Bastein et al., 1987), and, as a consequence, it plays an essential role in catalyst design, production and process development. [Pg.101]

Some data on the adsorption stoichiometry of various gases on relevant transition metals have been collected in Table 3.7, which illustrates the usefulness of certain molecules for catalyst characterization by chemisorption. Note that Cu as active phase can be measured well with N2O and CO, but not with H2. It is not wise to determine Ni dispersion with CO, due to the possibility of carbonyl formation Ni carbonyls are volatile and poisonous. Note that in Table 3.7, for Rh the H/Me ratio is size dependent. This phenomenon is not restricted to Rh it is common in the chemisorption of metals. [Pg.103]

Medvedev IG. 2004. To a theory of electrocatalysis for the hydrogen evolution reaction The hydrogen chemisorption energy on the transition metal alloys within the Anderson-Newns model. Russ J Electrochem 40 1123-1131. [Pg.90]

Guilbault GG, Das J. 1969. Chemisorption reactions of diisopropylmethyl phosphonate with transition metal salts. Journal of Physical Chemistry 73(7) 2243-2247. [Pg.149]

The described adsorption phenomena are characteristic for electrodes of sp metals. Transition metal electrodes are usually connected with irreversible chemisorption phenomena, discussed in Section 5.7. [Pg.242]

Numerous quantum mechanic calculations have been carried out to better understand the bonding of nitrogen oxide on transition metal surfaces. For instance, the group of Sautet et al have reported a comparative density-functional theory (DFT) study of the chemisorption and dissociation of NO molecules on the close-packed (111), the more open (100), and the stepped (511) surfaces of palladium and rhodium to estimate both energetics and kinetics of the reaction pathways [75], The structure sensitivity of the adsorption was found to correlate well with catalytic activity, as estimated from the calculated dissociation rate constants at 300 K. The latter were found to agree with numerous experimental observations, with (111) facets rather inactive towards NO dissociation and stepped surfaces far more active, and to follow the sequence Rh(100) > terraces in Rh(511) > steps in Rh(511) > steps in Pd(511) > Rh(lll) > Pd(100) > terraces in Pd (511) > Pd (111). The effect of the steps on activity was found to be clearly favorable on the Pd(511) surface but unfavorable on the Rh(511) surface, perhaps explaining the difference in activity between the two metals. The influence of... [Pg.85]


See other pages where Chemisorption transition metals is mentioned: [Pg.35]    [Pg.94]    [Pg.35]    [Pg.94]    [Pg.2222]    [Pg.2222]    [Pg.2228]    [Pg.2235]    [Pg.37]    [Pg.48]    [Pg.50]    [Pg.61]    [Pg.63]    [Pg.299]    [Pg.29]    [Pg.29]    [Pg.54]    [Pg.252]    [Pg.80]    [Pg.80]    [Pg.232]    [Pg.122]    [Pg.125]    [Pg.219]    [Pg.78]    [Pg.86]    [Pg.135]    [Pg.64]    [Pg.60]    [Pg.58]   
See also in sourсe #XX -- [ Pg.243 ]




SEARCH



Chemisorption, transition-metal sulfide

Metal chemisorption

Transition chemisorption

© 2024 chempedia.info