Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition coupling reaction

Transition Metal Catralyzed Cross-Coupling Reactions... [Pg.111]

Syntheses of alkenes with three or four bulky substituents cannot be achieved with an ylide or by a direct coupling reaction. Sterical hindrance of substituents presumably does not allow the direct contact of polar or radical carbon synthons in the transition state. A generally applicable principle formulated by A. Eschenmoser indicates a possible solution to this problem //an intermolecular reaction is complex or slow, it is advisable to change the educt in such a way. that the critical bond formation can occur intramolecularly (A. Eschenmoser, 1970). [Pg.34]

To date a number of reactions have been carried out in ionic liquids [for examples, see Dell Anna et al. J Chem Soc, Chem Commun 434 2002 Nara, Harjani and Salunkhe Tetrahedron Lett 43 1127 2002 Semeril et al. J Chem Soc Chem Commun 146 2002 Buijsman, van Vuuren and Sterrenburg Org Lett 3 3785 2007]. These include Diels-Alder reactions, transition-metal mediated catalysis, e.g. Heck and Suzuki coupling reactions, and olefin metathesis reactions. An example of ionic liquid acceleration of reactions carried out on solid phase is given by Revell and Ganesan [Org Lett 4 3071 2002]. [Pg.77]

Metallocycles as intermediates in synthesis of heterocycles by transition metal-catalyzed coupling reactions under C—H bond activation 99AG(E)1698. [Pg.214]

In the event, treatment of a rapidly stirred solution of 3 and sodium acetate in MeOH-tbO at 38 °C with PdCl2 results in the fomation of carpanone (1) in 46% yield. The ordered unimolecular transition state for the oxidative coupling reaction furnishes putative bis(quinodimethide) 2 stereoselectively. Once formed, 2 readily participates in an intramolecular Diels-Alder reaction4 to give carpanone (1). Two new rings and all five contiguous stereocenters are created in this spectacular sequential transformation.5... [Pg.97]

Fig. 7-2. Potential energy E as a function of the reaction coordinate for reactions of the P-nitrogen of arenediazonium ions with nucleophiles yielding (Z)- and (is)-azo compounds, a) Reactant-like transition states (e. g., reaction with OH) b) product-like transition states (e. g., diazo coupling reaction with phenoxide ions product = cyclohexadienone-type o-complex (see Sec. 12.8). Fig. 7-2. Potential energy E as a function of the reaction coordinate for reactions of the P-nitrogen of arenediazonium ions with nucleophiles yielding (Z)- and (is)-azo compounds, a) Reactant-like transition states (e. g., reaction with OH) b) product-like transition states (e. g., diazo coupling reaction with phenoxide ions product = cyclohexadienone-type o-complex (see Sec. 12.8).
The large amount of data on k2h/ 2D and ft for these azo coupling reactions allowed a critical comparative evaluation of these indices in relation to the problem of the symmetry of transition states in proton transfer reactions (Hanna et al.,... [Pg.360]

Kishimoto et al. (1974, 1981) found a general acid catalysis by protonated pyridines in coupling reactions of the 1-naphthoxide ion if weakly electrophilic diazonium ions were used. In this case it is likely that the general acid protonates the carbonyl oxygen of the o-complex, with a concerted or stepwise deprotonation at the 4-position (transition stage 12.150). [Pg.361]

A true intramolecular proton transfer in the second step of an azo coupling reaction was found by Snyckers and Zollinger (1970a, 1970b) in the reaction of the 8-(2 -pyridyl)-2-naphthoxide ion (with the transition state 12.151). This compound shows neither a kinetic deuterium isotope effect nor general base catalysis, in contrast to the sterically similar 8-phenyl-2-naphthoxide ion. Obviously the heterocyclic nitrogen atom is the proton acceptor. [Pg.362]

The side reactions existing in the transition metal coupling reactions are sometimes responsible for the low molecular weight. These side reactions can be classified in two types (1) reduction of monomer and (2) coupling of monomer with a nonreactive chain end. These side reactions can be minimized by proper choice of reaction temperature, catalysts, and catalyst loading. [Pg.477]

Because of the unambiguous reactive sites of monomers and the high chemo-and stereoselectivity of transition-metal-catalyzed coupling reactions, polymers prepared by transition metal coupling have predictable chemical structures. Functional groups can be easily and selectively introduced at the desired position within die polymer chains. Therefore, polymers widi specific properties can be rationally designed and synthesized. [Pg.477]

The general mechanism of coupling reactions of aryl-alkenyl halides with organometallic reagents and nucleophiles is shown in Fig. 9.4. It contains (a) oxidative addition of aryl-alkenyl halides to zero-valent transition metal catalysts such as Pd(0), (b) transmetallation of organometallic reagents to transition metal complexes, and (c) reductive elimination of coupled product with the regeneration of the zero-valent transition metal catalyst. [Pg.483]

AT-acetyltryptamines could be obtained via microwave-assisted transition-metal-catalyzed reactions on resin bound 3-[2-(acetylamino)ethyl]-2-iodo-lH-indole-5-carboxamide. While acceptable reaction conditions for the application of microwave irradiation have been identified for Stille heteroaryla-tion reactions, the related Suzuki protocol on the same substrate gave poor results, since at a constant power of 60 W, no full conversion (50-60%) of resin-bound 3-[2-(acetylamino)ethyl]-2-iodo-lH-indole-5-carboxamide could be obtained even when two consecutive cross-coupling reaction cycles (involving complete removal of reagents and by-products by washing off the resin) were used (Scheme 36). Also under conventional heating at 110 °C, and otherwise identical conditions, the Suzuki reactions proved to be difficult since two cross-coupling reaction cycles of 24 h had to be used to achieve full conversion. [Pg.174]

Carboxylates, which are chiral in the a-position totally lose their optical activity in mixed Kolbe electrolyses [93, 94]. This racemization supports either a free radical or its fast dynamic desorption-adsorption at the electrode. A clearer distinction can be made by looking at the diastereoselectivity of the coupling reaction. Adsorbed radicals should be stabilized and thus react via a more product like transition state... [Pg.98]

The coupling reaction of 1 (M=Zn) affords CPO 3 (M=Zn) in 55% yield in the presence of template 2 however, the absence of 2 decreases the yield to 34% [22]. With the increase of yield of 3, template 2 induces the selectivity of the reaction the yield of the by-product (cychc dimer 4 (M=Zn)) was changed from 23% (with no template) to 6% (in the presence of template). A similar CPO formation reaction was reported for the corresponding ruthenium porphyrins (3, M=Ru(CO)), in which the stability constant of the Ru-N coordination bond is 10 larger than that of the Zn-N coordination bond [23]. Although the transition state of the CPO produced by the ruthenium-based substrate is expected to be more stable than that produced by ZnPor, the yield of 3 (M=Ru(CO)) is only... [Pg.73]

The Sonogashira reaction is a transition metal-catalyzed coupling reaction which is widely used for the preparation of alkyl-, aryl- and diaryl-substituted acetylenes (Table 4.7) [120]. This reaction is a key step in natural product synthesis and is also applied in optical and electronic applications. Sonogashira reactions involve the use of an organic solvent with a stoichiometric portion of a base for capturing the... [Pg.483]

Transition metal catalysed cross-coupling reactions of organometalUc reagents containing Zn, Si, Mg, Sn or B with organic electrophiles in the presence of group 8-10 metals, notably Ni and Pd, are routinely the method of choice, both in academia and industry, for the preparation of C-0, C-S, C-H, C-N and C-C bonds [1]. [Pg.157]

Transition metal-catalysed reactions have emerged as powerful tools for carbon-carbon (C-C) bond formation [1], Cross-coupling reactions (Suzuki-Miyaura, Mizoroki-Heck, Stille, etc.) are recognised to be extremely reliable, robust and versatile. However, some other catalysed arylation reactions have been studied and have been reported to be very efficient [2]. In recent years, A -heterocyclic carbenes (NHC) have been extensively studied and their use as ligands for transition-metal catalysis has allowed for the significant improvement of many reactions [3]. This chapter highlights the use of NHC-bearing complexes in those arylation reactions. [Pg.191]


See other pages where Transition coupling reaction is mentioned: [Pg.335]    [Pg.475]    [Pg.792]    [Pg.715]    [Pg.157]    [Pg.359]    [Pg.359]    [Pg.397]    [Pg.467]    [Pg.483]    [Pg.489]    [Pg.525]    [Pg.588]    [Pg.163]    [Pg.276]    [Pg.307]    [Pg.311]    [Pg.130]    [Pg.339]    [Pg.4]    [Pg.50]    [Pg.43]    [Pg.127]    [Pg.201]    [Pg.76]    [Pg.335]    [Pg.518]    [Pg.608]   
See also in sourсe #XX -- [ Pg.110 , Pg.111 , Pg.121 ]




SEARCH



Coupling reactions transition metal-catalyzed

Cross-Coupling reactions, transition-metal-catalyzed Grignard reagents

Cross-coupling reactions transition metal catalysts, carbon

Cross-coupling reactions transition-metal-free

Microwave-Assisted Transition Metal Catalyzed Coupling Reactions

Negishi reaction, transition metal cross-coupling

Relevance to cross-coupling reactions catalyzed by transition metal complexes

Transition catalytic cross-coupling reactions

Transition coupling

Transition metal catalysis coupling reactions

Transition metal catalysts alkene cross-coupling reactions

Transition metal oxidative cross-coupling reactions

Transition metal reductive cross-coupling reactions

Transition metals iron cross-coupling reactions

Transition-Metal-Catalyzed Cross-Coupling Reactions of Organomagnesium Reagents

Transition-Metal-Catalyzed Cross-Coupling Reactions of Organozinc Reagents

Transition-metal catalyzed cross-coupling reactions

Transition-metal coupling reactions

Transition-metal-mediated cross-coupling reactions

© 2024 chempedia.info