Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vacuum transfer

Of the several possible modes of heat transfer, vacuum insulation virtually eliminates gaseous convection. Moreover, depending on the degree of vacuum, it can also significantly reduce conduction through the residual gas. Consequently, radiation from the warm surface to the cold surface tends to be... [Pg.378]

The course of a surface reaction can in principle be followed directly with the use of various surface spectroscopic techniques plus equipment allowing the rapid transfer of the surface from reaction to high-vacuum conditions see Campbell [232]. More often, however, the experimental observables are the changes with time of the concentrations of reactants and products in the gas phase. The rate law in terms of surface concentrations might be called the true rate law and the one analogous to that for a homogeneous system. What is observed, however, is an apparent rate law giving the dependence of the rate on the various gas pressures. The true and the apparent rate laws can be related if one assumes that adsorption equilibrium is rapid compared to the surface reaction. [Pg.724]

The surface work fiincdon is fonnally defined as the minimum energy needed m order to remove an electron from a solid. It is often described as being the difference in energy between the Fenni level and the vacuum level of a solid. The work ftmction is a sensitive measure of the surface electronic structure, and can be measured in a number of ways, as described in section B 1.26.4. Many processes, such as catalytic surface reactions or resonant charge transfer between ions and surfaces, are critically dependent on the work ftmction. [Pg.300]

For example, energy transfer in molecule-surface collisions is best studied in nom-eactive systems, such as the scattering and trapping of rare-gas atoms or simple molecules at metal surfaces. We follow a similar approach below, discussing the dynamics of the different elementary processes separately. The surface must also be simplified compared to technologically relevant systems. To develop a detailed understanding, we must know exactly what the surface looks like and of what it is composed. This requires the use of surface science tools (section B 1.19-26) to prepare very well-characterized, atomically clean and ordered substrates on which reactions can be studied under ultrahigh vacuum conditions. The most accurate and specific experiments also employ molecular beam teclmiques, discussed in section B2.3. [Pg.899]

Each newly cleaved mica surface is very clean. Flowever, it is known that mica has a strong tendency to spontaneously adsorb particles [45] or organic contaminants [46], which may affect subsequent measurements. The mica sheets are cut into 10 nun x 10 nun sized samples using a hot platinum wire, then laid down onto a thick and clean 100 nun x 100 nun mica backing sheet for protection. On the backing sheet, the mica samples can be transferred into a vacuum chamber for themial evaporation of typically 50-55 mn thick silver mirrors. [Pg.1733]

The solvation free energy (AGgoi) is the free energy change to transfer a molecule fro vacuum to solvent. The solvation free energy can be considered to have three componen... [Pg.609]

Preparation of REAOENTS.t It is essential for this preparation that the zinc powder should be in an active condition. For this purpose, it is usually sufficient if a sample of ordinary technical zinc powder is vigorously shaken in a flask with pure ether, and then filtered off at the pump, washed once with ether, quickly drained and without delay transferred to a vacuum desiccator. If, however, an impure sample of zinc dust fails to respond to this treatment, it should be vigorously stirred in a beaker with 5% aqueous sodium hydroxide solution until an effervescence of hydrogen occurs, and then filtered at the pump, washed thoroughly with distilled water, and then rapidly with ethanol and ether, and dried as before in a vacuum desiccator. The ethyl bromoacetate (b.p. 159 ) and the benzaldehyde (b.p. 179 ) should be dried and distilled before use. [Pg.287]

To prepare crystalline monoperphthalic acid, place the thoroughly dry ethereal solution (4) in a distilling flask equipped with a capillary tube connected with a calcium chloride or cotton wool drying tube, and attach the flask to a water pump. Evaporate the ether without the application of heat (ice will form on the flask) to a thin syrup (about 150 ml.). Transfer the syrup to an evaporating dish, rinse the flask with a little anhydrous ether, and add the rinsings to the syrup. Evaporate the remainder of the ether in a vacuum desiccator over concentrated sulphuric acid about 30 g. of monoperphthalic acid, m.p. 110° (decomp.), is obtained. [Pg.810]

Transfer the filtrate to a ceramic evaporating dish and heat on a water bath until a crystalline scum forms on the top. Cool the dish quickly then filter the mess on the vacuum Buchner to yield 96g of Methylamine Hydrochloride. Concentrate the filtrate once again to obtain a second crop of crystals, -IQg. Concentrate the filtrate a third time as far as possible using the water bath, then store the dish in a vacuum dessicator loaded with Sodium Hydroxide in the bottom for 24 hours. Add Chloroform to the residue left in the crucible to dissolve out Dimethylamine Hydrochloride (distill off the Chloroform to recover - good stuff) then filter on the venerable old vacuum Buchner funnel to yield an additional 20g of Methylamine Hydrochloride, washing the crystals in the funnel with a small poiiion of Chloroform ( 10mL). [Pg.269]

Purification of the Methylamine HCI is in order now, so transfer all of the crude product to a 500mL flask and add either 250mL of absolute Ethanol (see end of FAQ for preparing this) or, ideally, n-Butyl Alcohol (see Footnote 4). Heat at reflux with a Calcium Chloride guard tube for 30 minutes. Allow the undissolved solids to settle (Ammonium Chloride) then decant the clear solution and cool quickly to precipitate out Methylamine HCI. Filter rapidly on the vacuum Buchner funnel and transfer crystals to a dessicator (see Footnote 3). Repeat the reflux-settle-cool-filter process four... [Pg.269]

The drying agent was filtered off on a sintered-glass funnel and rinsed with some THF. The solution was transferred into a 500-ml wide-necked flask and concentrated in a water-pump vacuum. In order to remove the last traces of THF and some water the flask was connected directly (without a column) to a condenser and a receiver, cooled at -190°. The flask was evacuated by means of a mercury pump (p < 0.1 mmHg) and heated for 1.5 h at 85°C. The greater part of the mono-... [Pg.50]


See other pages where Vacuum transfer is mentioned: [Pg.19]    [Pg.263]    [Pg.19]    [Pg.263]    [Pg.46]    [Pg.560]    [Pg.729]    [Pg.1633]    [Pg.131]    [Pg.135]    [Pg.135]    [Pg.145]    [Pg.610]    [Pg.623]    [Pg.623]    [Pg.625]    [Pg.11]    [Pg.20]    [Pg.422]    [Pg.446]    [Pg.449]    [Pg.522]    [Pg.252]    [Pg.416]    [Pg.430]    [Pg.695]    [Pg.719]    [Pg.763]    [Pg.843]    [Pg.888]    [Pg.971]    [Pg.57]    [Pg.191]    [Pg.199]    [Pg.270]    [Pg.56]    [Pg.68]    [Pg.69]    [Pg.69]    [Pg.91]    [Pg.111]    [Pg.121]   
See also in sourсe #XX -- [ Pg.122 ]




SEARCH



Extended vacuum transfer system

Heat Energy Transfer under Vacuum Conditions

Transfer film vacuum

Transfer molding vacuum assisted resin injection

Transfer vacuum importance

Vacuum heat transfer

Vacuum transfer apparatus

Vacuum, electron transfer

Vacuum-assisted resin transfer

Vacuum-assisted resin transfer molding

Vacuum-assisted resin transfer molding, VARTM

Vacuum-assisted resin transfer moulding

Vacuum-assisted resin transfer moulding VARTM)

© 2024 chempedia.info