Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium reactions with

Essentially this method solves the problems of the bomb lining, in this case calcium fluoride and of titanium reaction with the iron wall. This compoimd, because of its low melting point (1300° C.), which is many hundred degrees below that of either titanium or zirconium, would melt if it had to contain the pure fused metals. However, the zinc alloys with 20 to 30% zinc melt below 1300° C., thus making possible the use of calcium fluoride as a liner for the bombs. [Pg.148]

Several structures of the transition state have been proposed (I. D. Williams, 1984 K. A. Jorgensen, 1987 E.J. Corey, 1990 C S. Takano, 1991). They are compatible with most data, such as the observed stereoselectivity, NMR measuiements (M.O. Finn, 1983), and X-ray structures of titanium complexes with tartaric acid derivatives (I.D. Williams, 1984). The models, e. g., Jorgensen s and Corey s, are, however, not compatible with each other. One may predict that there is no single dominant Sharpless transition state (as has been found in the similar case of the Wittig reaction see p. 29f.). [Pg.124]

Similar to IFP s Dimersol process, the Alphabutol process uses a Ziegler-Natta type soluble catalyst based on a titanium complex, with triethyl aluminum as a co-catalyst. This soluble catalyst system avoids the isomerization of 1-butene to 2-butene and thus eliminates the need for removing the isomers from the 1-butene. The process is composed of four sections reaction, co-catalyst injection, catalyst removal, and distillation. Reaction takes place at 50—55°C and 2.4—2.8 MPa (350—400 psig) for 5—6 h. The catalyst is continuously fed to the reactor ethylene conversion is about 80—85% per pass with a selectivity to 1-butene of 93%. The catalyst is removed by vaporizing Hquid withdrawn from the reactor in two steps classical exchanger and thin-film evaporator. The purity of the butene produced with this technology is 99.90%. IFP has Hcensed this technology in areas where there is no local supply of 1-butene from other sources, such as Saudi Arabia and the Far East. [Pg.440]

Titanium carbide may also be made by the reaction at high temperature of titanium with carbon titanium tetrachloride with organic compounds such as methane, chloroform, or poly(vinyl chloride) titanium disulfide [12039-13-3] with carbon organotitanates with carbon precursor polymers (31) and titanium tetrachloride with hydrogen and carbon monoxide. Much of this work is directed toward the production of ultrafine (<1 jim) powders. The reaction of titanium tetrachloride with a hydrocarbon-hydrogen mixture at ca 1000°C is used for the chemical vapor deposition (CVD) of thin carbide films used in wear-resistant coatings. [Pg.118]

Titanium Tetrafluoride. Titanium tetrafluoride [7783-63-3] is a white hygroscopic soHd, density 2798 kg/m, that sublimes at 284°C. The properties suggest that it is a fluorine-bridged polymer in which the titanium is six-coordinate. The preferred method of preparation is by direct fluorination of titanium sponge at 200°C in a flow system. At this temperature, the product is sufficiently volatile that it does not protect the unreacted sponge and the reaction proceeds to completion. The reaction of titanium tetrachloride with cooled, anhydrous, Hquid hydrogen fluoride may be used if pure hydrogen fluoride is available. [Pg.129]

Titanium(IV) sulfate can be prepared by the reaction of titanium tetrachloride with sulfur trioxide dissolved in sulfuryl chloride. [Pg.134]

Reactions with Alcohols. The tendency of titanium(IV) to reach coordination number six accounts for the rapid exchange of alkoxy groups with alcohols. Departure of an alkoxy group with the proton is the first step in the ultimate exchange of all four alkoxyls. The four-coordinated monomer is expected to react... [Pg.142]

Reaction with Lactones. Hydroxycarboxyhc acid ester complexes of titanium are formed by reaction of a tetraalkyl titanate with a lactone, such as P-propiolactone, y-butyrolactone, or valerolactone (35). For example. [Pg.142]

Reactions of titanium alkyls with aldehydes and ketones are generally more stereospecific and selective than the corresponding Grignard reactions (416). [Pg.160]

Many other reactions of ethylene oxide are only of laboratory significance. These iaclude nucleophilic additions of amides, alkaU metal organic compounds, and pyridinyl alcohols (93), and electrophilic reactions with orthoformates, acetals, titanium tetrachloride, sulfenyl chlorides, halo-silanes, and dinitrogen tetroxide (94). [Pg.454]

Copiously flush eyes with water for up to 15 min, and skin with water and soap - except in the case of substances such as quicklime whose reaction with water is exothermic (1 g generates >18 kcal), titanium or tin tetrachloride, both of which rapidly hydrolize to form hydrochloric acid... [Pg.136]

Sparks created by arcs in electrical switchgear, engines, motors, or by friction (e.g. lighter spark). Aluminium, magnesium, titanium and their alloys have an affinity for oxygen and in a thermite reaction with rust produce temperatures <3000°C. A thermite flash can result from the... [Pg.181]

Perfluoroalkyl- and perfluoroaryltitanium compounds were prepared m situ via reaction of the corresponding Gngnard reagents with chlorotris(diethyl-amido)titanium [28S] Reaction of the titanium compounds with aldehydes resulted in fluoroalkylative amination [288] (equation 192)... [Pg.718]

A reagent more reactive than tris(dimethylamino)arsine employed by Weingarten and White 39) was tetrakis(dimethylamino)titanium (145). With this compound it was possible to prepare N,N-dimethyl(l-isopropyl-2-methylpropcnyl)amine (147) from diisopropyl ketone. Weingarten and White 39) have suggested a possible mechanism for this reaction (see p. 88). If benzaldehyde 39,111), formaldehyde 111), or acetaldehyde 39) is used, the corresponding gem diamine or aminal (143) is formed. [Pg.87]


See other pages where Titanium reactions with is mentioned: [Pg.637]    [Pg.778]    [Pg.637]    [Pg.778]    [Pg.504]    [Pg.13]    [Pg.54]    [Pg.66]    [Pg.74]    [Pg.383]    [Pg.430]    [Pg.113]    [Pg.294]    [Pg.294]    [Pg.148]    [Pg.140]    [Pg.384]    [Pg.94]    [Pg.138]    [Pg.142]    [Pg.144]    [Pg.145]    [Pg.154]    [Pg.163]    [Pg.53]    [Pg.52]    [Pg.133]    [Pg.51]    [Pg.162]   


SEARCH



Titanium reactions

© 2024 chempedia.info