Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium complexes oxidation

Asymmetric epoxidation is another important area of activity, initially pioneered by Sharpless, using catalysts based on titanium tetraisoprop-oxide and either (+) or (—) dialkyl tartrate. The enantiomer formed depends on the tartrate used. Whilst this process has been widely used for the synthesis of complex carbohydrates it is limited to allylic alcohols, the hydroxyl group bonding the substrate to the catalyst. Jacobson catalysts (Formula 4.3) based on manganese complexes with chiral Shiff bases have been shown to be efficient in epoxidation of a wide range of alkenes. [Pg.117]

Use of D2 yielded CD4, and methane was formed from reaction of the complex with just H2. The water produced in the reaction hydrolyzes the titanium complex to an inactive cluster Cp6Ti608 containing bridging oxide ligands. [Pg.374]

Olefin epoxidation is an important industrial domain. The general approach of SOMC in this large area was to understand better the elementary steps of this reaction catalyzed by silica-supported titanium complexes, to identify precisely reaction intermediates and to explain catalyst deachvahon and titanium lixiviation that take place in the industrial Shell SMPO (styrene monomer propylene oxide) process [73]. (=SiO) Ti(OCap)4 (OCap=OR, OSiRs, OR R = hydrocarbyl) supported on MCM-41 have been evaluated as catalysts for 1-octene epoxidation by tert-butyl hydroperoxide (TBHP). Initial activity, selechvity and chemical evolution have been followed. In all cases the major product is 1,2-epoxyoctane, the diol corresponding to hydrolysis never being detected. [Pg.113]

We reported a catalytic enantioselective cyanosUylation of ketones that produces chiral tetrasubstituted carbons from a wide range of substrate ketones [Eq. (13.31)]. The catalyst is a titanium complex of a D-glucose-derived ligand 47. It was proposed that the reaction proceeds through a dual activation of substrate ketone by the titanium and TMSCN by the phosphine oxide (51), thus producing (l )-ketone cyanohydrins ... [Pg.399]

The slurry solution plays a different role between oxide (as a hydrolizer) and metal (as an oxidizer) slurries. It is more complex in metal than in oxide, because traditionally, oxide slurry is used only for polishing oxide (for ILD, for example), whereas the metal slurry (for tungsten, for example) is used to polish tungsten, titanium nitride, titanium, and oxide. Accordingly, the choice of a metal slurry oxidizer must first satisfy the requirement of the selectivities between each different deposited film. Selection of solution for oxide slurry does not have such constraints. [Pg.146]

Recently, Feng and co-workers reported an asymmetric sulfide oxidation" catalyzed by titanium complexes bearing HydrOx ligands, for example, 576 (Scheme 8.199). ° Enantioselectivities approached a level of synthetic utility for oxidation of aryl alkyl sulfides 632 although the yields of the sulfoxide 633 were poor due to overoxidation to the sulfone 634. The overoxidation is especially significant for reactions with high enantioselectivity. [Pg.507]

Oxidation of the enantiotopic electron pairs at sulfur, mediated by chiral titanium complexes, to yield chiral sulfoxides with high enantiomeric excess14. [Pg.401]

Heterolytic liquid-phase oxidation processes are more recent than homolytic ones. The two major applications are the Wacker process for oxidation of ethylene to acetaldehyde by air, catalyzed by PdCl2-CuCl2 systems,98 and the Arco oxirane" or Shell process100 for epoxidation of propylene by f-butyl or ethylbenzene hydroperoxide catalyzed by molybdenum or titanium complexes. These heterolytic reactions require less drastic conditions than the homolytic ones... [Pg.327]

A.7. OTHER ASYMMETRIC EPOXIDATIONS AND OXIDATIONS CATALYZED BY TITANIUM COMPLEXES... [Pg.272]

The Orsay group found serendipitously that methyl p-tolyl sulfide was oxidized to methyl p-toly 1 sulfoxide with high enantiomeric purity (80-90% ee) when the Sharpless reagent was modified by addition of 1 mole equiv. of water [16,17]. The story of this discovery was described in a review [19], Sharpless conditions gave racemic sulfoxide and sulfone. Careful optimization of the stoichiometry of the titanium complex in the oxidation of p-tolyl sulfide led to the selection of Ti(0iPr)4/(7 ,7 )-DET/H20 (1 2 1) combination as the standard system [ 17]. In the beginning of their investigations, the standard conditions implied a stoichiometric amount of the chiral titanium complex with respect to the prochiral sulfide [16,17,20-23]. Later, proper conditions were found, which decreased the amount of the titanium complex without too much alteration of the enantioselectivity [24,25],... [Pg.328]

Uemura et al. [49] found that (R)-1,1 -binaphthol could replace (7 ,7 )-diethyl tartrate in the water-modified catalyst, giving good results (up to 73% ee) in the oxidation of methyl p-tolyl sulfoxide with f-BuOOH (at -20°C in toluene). The chemical yield was close to 90% with the use of a catalytic amount (10 mol %) of the titanium complex (Ti(0-i-Pr)4/(/ )-binaphthol/H20 = 1 2 20). They studied the effect of added water and found that high enantioselectivity was obtained when using 0.5-3.0 equivalents of water with respect to the sulfide. In the absence of water, enantioselectivity was very low. The beneficial effect of water is clearly established here, but the amount of water needed is much higher than that in the case of the catalyst with diethyl tartrate. They assumed that a mononuclear titanium complex with two binaphthol ligands was involved, in which water affects the structure of the titanium complex and its rate of formation. [Pg.336]

Uemura reported a highly enantioselective oxidation of sulfides to sulfoxides using a chiral titanium complex prepared from chiral BINOL and Ti(0-i-Pr)4, and this reaction exhibits a remarkable asymmetric amplification (Scheme 9.15) [33]. [Pg.708]


See other pages where Titanium complexes oxidation is mentioned: [Pg.323]    [Pg.134]    [Pg.189]    [Pg.73]    [Pg.342]    [Pg.57]    [Pg.73]    [Pg.444]    [Pg.165]    [Pg.517]    [Pg.27]    [Pg.133]    [Pg.211]    [Pg.201]    [Pg.150]    [Pg.435]    [Pg.33]    [Pg.155]    [Pg.520]    [Pg.520]    [Pg.323]    [Pg.1039]    [Pg.328]    [Pg.332]    [Pg.332]    [Pg.337]    [Pg.337]    [Pg.339]    [Pg.350]    [Pg.351]    [Pg.707]   
See also in sourсe #XX -- [ Pg.114 ]




SEARCH



Asymmetric oxidation with chiral titanium complexe

Chiral titanium complex, oxidation

Chiral titanium complexes asymmetric oxidation with

Chiral titanium complexes oxidation of sulfides with

Oxides titanium oxide

Titanium complex oxides

Titanium complex oxides

Titanium complexe

Titanium complexes

Titanium complexes oxidation catalysts

Titanium complexes oxidation with

Titanium oxidized

© 2024 chempedia.info