Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Time-dependent molecular theory

The foundations of the modem tireory of elementary gas-phase reactions lie in the time-dependent molecular quantum dynamics and molecular scattering theory, which provides the link between time-dependent quantum dynamics and chemical kinetics (see also chapter A3.11). A brief outline of the steps hr the development is as follows [27],... [Pg.772]

The interaction of a molecular species with electromagnetic fields can cause transitions to occur among the available molecular energy levels (electronic, vibrational, rotational, and nuclear spin). Collisions among molecular species likewise can cause transitions to occur. Time-dependent perturbation theory and the methods of molecular dynamics can be employed to treat such transitions. [Pg.375]

The mathematical machinery needed to compute the rates of transitions among molecular states induced by such a time-dependent perturbation is contained in time-dependent perturbation theory (TDPT). The development of this theory proceeds as follows. One first assumes that one has in-hand all of the eigenfunctions k and eigenvalues Ek that characterize the Hamiltonian H of the molecule in the absence of the external perturbation ... [Pg.377]

Time-dependent perturbation theory, electron nuclear dynamics (END), molecular systems, 340-342... [Pg.101]

In this chapter we will focus on one particular, recently developed DFT-based approach, namely on first-principles (Car-Parri-nello) molecular dynamics (CP-MD) [9] and its latest advancements into a mixed quantum mechanical/molecular mechanical (QM/MM) scheme [10-12] in combination with the calculation of various response properties [13-18] within DFT perturbation theory (DFTPT) and time-dependent DFT theory (TDDFT) [19]. [Pg.6]

Time-dependent response theory concerns the response of a system initially in a stationary state, generally taken to be the ground state, to a perturbation turned on slowly, beginning some time in the distant past. The assumption that the perturbation is turned on slowly, i.e. the adiabatic approximation, enables us to consider the perturbation to be of first order. In TD-DFT the density response dp, i.e. the density change which results from the perturbation dveff, enables direct determination of the excitation energies as the poles of the response function dP (the linear response of the KS density matrix in the basis of the unperturbed molecular orbitals) without formally having to calculate a(co). [Pg.121]

Some authors have described the time evolution of the system by more general methods than time-dependent perturbation theory. For example, War-shel and co-workers have attempted to calculate the evolution of the function /(r, Q, t) defined by Eq. (3) by a semi-classical method [44, 96] the probability for the system to occupy state v]/, is obtained by considering the fluctuations of the energy gap between and 11, which are induced by the trajectories of all the atoms of the system. These trajectories are generated through molecular dynamics models based on classical equations of motion. This method was in particular applied to simulate the kinetics of the primary electron transfer process in the bacterial reaction center [97]. Mikkelsen and Ratner have recently proposed a very different approach to the electron transfer problem, in which the time evolution of the system is described by a time-dependent statistical density operator [98, 99]. [Pg.22]

The interest aroused by the field of radiationless transitions in recent years has been enormous, and several reviews have been published 72-74) Basically, the ideas of Robinson and Frosch 75) who used the concepts on non-stationary molecular states and time-dependent perturbation theory to calculate the rate of transitions between Born-Oppenheimer states, are still valid, although they have been extended and refined. The nuclear kinetic energy leads to an interaction between different Born-Oppenheimer states and the rate of radiationless transitions is given by... [Pg.41]

As in the case of photodissociation, the quantum theory of reactive molecular scattering was initially entirely based on time-independent scattering theory [4-7,100-123]. There were several early attempts to apply time-dependent quantum theory to reactive scattering processes [124—131]. But the modern era of the field really began with the seminal work of Kosloff et al. [37] and the subsequent application of his grid-based methods to the reactive scattering problem by Neuhauser and Baer and coworkers [45,132]. There have been many developments in the field [93,133-138], and several reviews and a book have been written on the topic [10,139-141]. My aim in the next section will be to outline the basic methods of time-dependent quantum theory used in reactive scattering calculations. While the review will cover many aspects of the theory, it will not cover all the approaches currently in use (as of 2003). [Pg.264]

The Time Dependent Processes Section uses time-dependent perturbation theory, combined with the classical electric and magnetic fields that arise due to the interaction of photons with the nuclei and electrons of a molecule, to derive expressions for the rates of transitions among atomic or molecular electronic, vibrational, and rotational states induced by photon absorption or emission. Sources of line broadening and time correlation function treatments of absorption lineshapes are briefly introduced. Finally, transitions induced by collisions rather than by electromagnetic fields are briefly treated to provide an introduction to the subject of theoretical chemical dynamics. [Pg.3]

A major criticism of all this work is the treatment of the solvent as hydrodynamic continuum. To study the hydrodynamic repulsion of particles requires either molecular dynamics calculations or time-dependent liquid theories to be applied. It will be most interesting to see how the analysis using kinetic theory develops (see, for instance, Cukier et al. [454]). [Pg.269]

Transition probabilities. The interaction of quantum systems with light may be studied with the help of Schrodinger s time-dependent perturbation theory. A molecular complex may be in an initial state i), an eigenstate of the unperturbed Hamiltonian, Jfo I ) = E 10- If the system is irradiated by electromagnetic radiation of frequency v = co/2nc, transitions to other quantum states /) of the complex occur if the frequency is sufficiently close to Bohr s frequency condition,... [Pg.49]

The discussion in the previous section was helpful in identifying the factors at the molecular level which are involved when electron transfer occurs. Two different theoretical approaches have been developed which incorporate these features and attempt to account for electron transfer rate constants quantitatively. The first, by Marcus34 and Hush,35 is classical in nature, and the second is based on quantum mechanics and time dependent perturbation theory. The theoretical aspects of electron transfer in chemical36-38 and biological systems39 have been discussed in a series of reviews. [Pg.340]

Resonances are common and unique features of elastic and inelastic collisions, photodissociation, unimolecular decay, autoionization problems, and related topics. Their general behavior and formal description are rather universal and identical for nuclear, electronic, atomic, or molecular scattering. Truhlar (1984) contains many examples of resonances in various fields of atomic and molecular physics. Resonances are particularly interesting if more than one degree of freedom is involved they reflect the quasi-bound states of the Hamiltonian and reveal a great deal of information about the multi-dimensional PES, the internal energy transfer, and the decay mechanism. A quantitative analysis based on time-dependent perturbation theory follows in the next section. [Pg.138]

The theory of PCM calculation of the effective polarizabilities is based on a time-dependent response theory that describes the interaction between the molecular solutes and the Maxwell electric field. We will review the method in three separate sections, the... [Pg.242]

In quantum mechanics the definition of molecular polarizabilities is given through time-dependent perturbation theory in the electric dipole approximation. These expressions are usually given in terms of sums of transition matrix elements over energy denominators involving the full electronic structure of the molecule [42]. [Pg.159]

In this section we outline the coupled cluster-molecular mechanics response method, the CC/MM response method. Ref. [51] considers CC response functions for molecular systems in vacuum and for further details we refer to this article. The identification of response functions is closely connected to time-dependent perturbation theory [51,65,66,67,68,69,70], Our starting point is the quasienergy and we identify the response functions as simple derivatives of the quasienergy. For a molecular system in vacuum where Hqm is the vacuum Hamiltonian for the unperturbed molecule and V" is a time-dependent perturbation we have the following time-dependent Hamiltonian, H,... [Pg.367]

P. Salek, O. Vahtras, T. Helgaker, H. Agren, Density-functional theory of linear and nonlinear time-dependent molecular properties, J. Chem. Phys. 117 (2002) 9630. [Pg.142]

Three landmark papers on the application of time-dependent perturbation theory to electrochemical problems were published in rapid succession by - Levich and - Dogonadze in 1959 [iii], - Gerischer in 1960 [iv], and McConnell in 1961 [v]. A very large literature has subsequently sprung from these works, driven by developments in scanning tunneling microscopy, molecular electronics, and biological electron transfer. [Pg.453]

Utilization of both ion and neutral beams for such studies has been reported. Toennies [150] has performed measurements on the inelastic collision cross section for transitions between specified rotational states using a molecular beam apparatus. T1F molecules in the state (J, M) were separated out of a beam traversing an electrostatic four-pole field by virtue of the second-order Stark effect, and were directed into a noble-gas-filled scattering chamber. Molecules which were scattered by less than were then collected in a second four-pole field, and were analyzed for their final rotational state. The beam originated in an effusive oven source and was chopped to obtain a velocity resolution Avjv of about 7 %. The velocity change due to the inelastic encounters was about 0.3 %. Transition probabilities were calculated using time-dependent perturbation theory and the straight-line trajectory approximation. The interaction potential was taken to be purely attractive ... [Pg.222]

Finally, the molecule can be translationally, vibrationally, and rota-tionally excited by the distribution of the kinetic recoil energy of the daughter nucleus among the available degrees of freedom. It is apparent from these considerations that the general theoretical treatment of the molecular excitation and fragmentation caused by the /8 decay is quite difficult, even in the case of very simple molecules. Among several theoretical treatments, we will illustrate the time-dependent perturbation theory applied by Cantwell (1956) to the decay of molecular tritium. [Pg.86]

The molecular polarizabilities can be interpreted quantum mechanically by using the methods of time-dependent perturbation theory. Under the influence of the electric fleld, the molecular ground state ( g)) is changed by admixture of excited states ( /), m). ..). Collections of such expressions are available in the literature (Ward, 1965 Orr and Ward, 1971 Bishop, 1994b). A comprehensive treatment has also been given by Flytzanis (1975). Here, we only quote the results for the linear optical polarizability a(-a) a)) and the second-order polarizability /3(-2a) o), co). The linear optical polarizability may be represented by the sum of two-level contributions (45). [Pg.136]


See other pages where Time-dependent molecular theory is mentioned: [Pg.1500]    [Pg.398]    [Pg.248]    [Pg.283]    [Pg.173]    [Pg.120]    [Pg.190]    [Pg.423]    [Pg.238]    [Pg.334]    [Pg.377]    [Pg.106]    [Pg.100]    [Pg.160]    [Pg.156]    [Pg.327]    [Pg.468]   


SEARCH



Born-Oppenheimer approximation time-dependent molecular theory

Hamiltonians time-dependent molecular theory

Potential energy surfaces time-dependent molecular theory

Potential energy time-dependent molecular theory

Time-dependent molecular theory coherent states

Time-dependent molecular theory electron nuclear dynamics

Time-dependent molecular theory quantum mechanics

Time-dependent theories

© 2024 chempedia.info