Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Time-dependent molecular theory coherent states

In its broadest sense, spectroscopy is concerned with interactions between light and matter. Since light consists of electromagnetic waves, this chapter begins with classical and quantum mechanical treatments of molecules subjected to static (time-independent) electric fields. Our discussion identifies the molecular properties that control interactions with electric fields the electric multipole moments and the electric polarizability. Time-dependent electromagnetic waves are then described classically using vector and scalar potentials for the associated electric and magnetic fields E and B, and the classical Hamiltonian is obtained for a molecule in the presence of these potentials. Quantum mechanical time-dependent perturbation theory is finally used to extract probabilities of transitions between molecular states. This powerful formalism not only covers the full array of multipole interactions that can cause spectroscopic transitions, but also reveals the hierarchies of multiphoton transitions that can occur. This chapter thus establishes a framework for multiphoton spectroscopies (e.g., Raman spectroscopy and coherent anti-Stokes Raman spectroscopy, which are discussed in Chapters 10 and 11) as well as for the one-photon spectroscopies that are described in most of this book. [Pg.1]

The time dependence of the molecular wave function is carried by the wave function parameters, which assume the role of dynamical variables [19,20]. Therefore the choice of parameterization of the wave functions for electronic and nuclear degrees of freedom becomes important. Parameter sets that exhibit continuity and nonredundancy are sought and in this connection the theory of generalized coherent states has proven useful [21]. Typical parameters include molecular orbital coefficients, expansion coefficients of a multiconfigurational wave function, and average nuclear positions and momenta. We write... [Pg.224]

The END theory was proposed in 1988 [11] as a general approach to deal with time-dependent non-adiabatic processes in quantum chemistry. We have applied the END method to the study of time-dependent processes in energy loss [12-16]. The END method takes advantage of a coherent state representation of the molecular wave function. A quantum mechanical Lagrangian formulation is employed to approximate the Schrodinger equation, via the time-dependent variational principle, by a set of coupled first-order differential equations in time to describe the END. [Pg.101]


See other pages where Time-dependent molecular theory coherent states is mentioned: [Pg.5]    [Pg.218]    [Pg.364]    [Pg.64]    [Pg.3]    [Pg.9]    [Pg.282]    [Pg.305]    [Pg.6]    [Pg.88]    [Pg.165]    [Pg.413]    [Pg.6]    [Pg.479]   
See also in sourсe #XX -- [ Pg.21 , Pg.22 , Pg.23 , Pg.24 , Pg.25 , Pg.26 , Pg.27 , Pg.28 , Pg.29 , Pg.30 , Pg.31 ]




SEARCH



Coherence theory

Coherence/coherent states

Coherent states

Molecular states

State dependency

State-dependent

Time-dependent molecular theory

Time-dependent states

Time-dependent theories

© 2024 chempedia.info