Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thiophenes and aromaticity

In addition to the sulfur compounds listed above, hydrogen sulfide has been found in many crude petroleums. Elemental sulfur has been definitely found in several crude petroleums by API Research Project 48 (23). Although Birch and Norris (5) isolated several disulfides from the spent caustic used in treating gasoline from Iranian petroleum, these compounds may have resulted from the oxidation of the thiols and their presence in the original petroleum is regarded as doubtful. Other types of sulfur compounds, such as thiophenes and aromatic thiols, have been identified in cracked petroleum products, but the presence of such compounds in naturally occurring petroleums has not yet been established. [Pg.337]

Manufacture of thiophene on the commercial scale involves reactions of the two component method type wherein a 4-carbon chain molecule reacts with a source of sulfur over a catalyst which also effects cyclization and aromatization. A range of suitable feedstocks has included butane, / -butanol, -butyraldehyde, crotonaldehyde, and furan the source of sulfur has included sulfur itself, hydrogen sulfide, and carbon disulfide (29—32). [Pg.20]

The tendency to form substitution products, i.e. to revert to type, is greatest with the more aromatic systems pyrrole and thiophene and least with furan. [Pg.43]

The reactivity sequence furan > tellurophene > selenophene > thiophene is thus the same for all three reactions and is in the reverse order of the aromaticities of the ring systems assessed by a number of different criteria. The relative rate for the trifluoroacetylation of pyrrole is 5.3 x lo . It is interesting to note that AT-methylpyrrole is approximately twice as reactive to trifluoroacetylation as pyrrole itself. The enhanced reactivity of pyrrole compared with the other monocyclic systems is also demonstrated by the relative rates of bromination of the 2-methoxycarbonyl derivatives, which gave the reactivity sequence pyrrole>furan > selenophene > thiophene, and by the rate data on the reaction of the iron tricarbonyl-complexed carbocation [C6H7Fe(CO)3] (35) with a further selection of heteroaromatic substrates (Scheme 5). The comparative rates of reaction from this substitution were 2-methylindole == AT-methylindole>indole > pyrrole > furan > thiophene (73CC540). [Pg.43]

The precise geometrical data obtained by microwave spectroscopy allow conclusions regarding bond delocalization and hence aromaticity. For example, the microwave spectrum of thiazole has shown that the structure is very close to the average of the structures of thiophene and 1,3,4-thiadiazole, which indicates a similar trend in aromaticity. However, different methods have frequently given inconsistent results. [Pg.33]

The 4- and 5-hydroxy-imidazoles, -oxazoles and -thiazoles (499, 501) and 4-hydroxy-pyrazoles, -isoxazoles and -isothiazoles (503) cannot tautomerize to an aromatic carbonyl form. However, tautomerism similar to that which occurs in hydroxy-furans, -thiophenes and -pyrroles is possible (499 500 503 504 501 502), as well as a zwitterionic... [Pg.101]

This 1,3-migration of hydrogen was also observed when 40 reacted with Lawesson s reagent to produce the dithiolactone 41. However, when y-hydroxy-a,P-unsaturated aldehyde 42 was reacted under similar conditions, thiophene 43 was prepared efficiently. These results are not surprising considering that the oxidation state of 42 is equivalent to the traditional saturated 1,4-dicarbonyl substrates of the Paal thiophene reaction via tautomerization of the double bond, and aromaticity is reestablished in the fully conjugated 43. [Pg.214]

In the benzene series, an approximately linear relationship has been obtained between the chemical shifts of the para-hydrogen in substituted benzenes and Hammett s a-values of the substituents. Attempts have been made, especially by Taft, ° to use the chemical shifts as a quantitative characteristic of the substituent. It is more difficult to correlate the chemical shifts of thiophenes with chemical reactivity data since few quantitative chemical data are available (cf. Section VI,A). Comparing the chemical shifts of the 5-hydrogen in 2-substituted thiophenes and the parahydrogens in substituted benzenes, it is evident that although —I—M-substituents cause similar shifts, large differences are obtained for -j-M-substituents indicating that such substituents may have different effects on the reactivity of the two aromatic systems in question. Differences also... [Pg.10]

The acid cleavage of the aryl— silicon bond (desilylation), which provides a measure of the reactivity of the aromatic carbon of the bond, has been applied to 2- and 3-thienyl trimethylsilane, It was found that the 2-isomer reacted only 43.5 times faster than the 3-isomer and 5000 times faster than the phenyl compound at 50,2°C in acetic acid containing aqueous sulfuric acid. The results so far are consistent with the relative reactivities of thiophene upon detritia-tion if a linear free-energy relationship between the substituent effect in detritiation and desilylation is assumed, as the p-methyl group activates about 240 (200-300) times in detritiation with aqueous sulfuric acid and about 18 times in desilylation. A direct experimental comparison of the difference between benzene and thiophene in detritiation has not been carried out, but it may be mentioned that even in 80.7% sulfuric acid, benzene is detritiated about 600 times slower than 2-tritiothiophene. The aforementioned consideration makes it probable that under similar conditions the ratio of the rates of detritiation of thiophene and benzene is larger than in the desilylation. A still larger difference in reactivity between the 2-position of thiophene and benzene has been found for acetoxymercuration which... [Pg.44]

Through a study of the influence of thiophene and other aromatic compounds on the retardation and chain transfer on the polymerization of styrene by stannic chloride, the relative rates of attack of a carbonium-ion pair could be obtained. It was found that thiophene in this reaction was about 100 times more reactive than p-xylene and somewhat less reactive than anisole. ... [Pg.45]

The a-selectivity is illustrated by the fact that 2-alkyl-, > 2-methoxy-, > and 2-alkyIthio-thiophenes and alkyl thenyl sul-fides ° are metalated exclusively in the 5-position. In electrophilic aromatic substitution, as previously mentioned, an appreciable amount of 3-substitution is obtained with some of these groups. After acetalization ketones can also be metalated. Thus from the diethyl ketal of 2-acetylthiophene, 2-acetyl-5-thiophenealdehyde was obtained after metalation with n-butyllithium followed by the reaction of the metalorganic compound with A,A -dimethylformamide. ... [Pg.73]

Aromatic sextets can also be present in five- and seven-membered rings. If a five-membered ring has two double bonds and the fifth atom possesses an unshared pair of electrons, the ring has five p orbitals that can overlap to create five new orbitals— three bonding and two antibonding (Fig. 2.6). There are six electrons for these orbitals the four p orbitals of the double bonds each contribute one and the filled orbital contributes the other two. The six electrons occupy the bonding orbitals and constitute an aromatic sextet. The heterocyclic compounds pyrrole, thiophene, and... [Pg.51]

Thiophenes continue to play a major role in commercial applications as well as basic research. In addition to its aromatic properties that make it a useful replacement for benzene in small molecule syntheses, thiophene is a key element in superconductors, photochemical switches and polymers. The presence of sulfur-containing components (especially thiophene and benzothiophene) in crude petroleum requires development of new catalysts to promote their removal (hydrodesulfurization, HDS) at refineries. Interspersed with these commercial applications, basic research on thiophene has continued to study its role in electrocyclic reactions, newer routes for its formation and substitution and new derivatives of therapeutic potential. New reports of selenophenes and tellurophenes continue to be modest in number. [Pg.77]

Electron-rich aromatic compounds such as durene, p-dimethoxybenzene, mesitylene, anisole, thiophene, and fluorene can be benzoylated or acetylated by the corresponding Af-acylimidazole in trifluoroacetic acid to give the corresponding benzophenone or acetophenone derivative in good yield (Method A). As the actual acylating agent, a mixed anhydride of trifluoroacetic acid and benzoic acid has been proposed 1973... [Pg.319]

On the contrary, for oil E the quantity of asphaltenes decreases from 8.1 for the initial crude oil to 4-1 for the sample produced at the end of the test (Fig. 12). Moreover, the amounts of resins + asphaltenes decreases whereas the amounts of saturates and aromatics increase (51 4 in the initial oil, 72.4 for a sample recovered at t = 24 h). The analysis by GC shows that each oil fraction is enriched in components with molecular chains ranging from 15 to 30 carbons which don t exist in the initial oil (n-alkanes, aromatics O q-CLq which are less complex than the initial ones, thiophenic compounds C -C ). The elemental... [Pg.422]

It has been known that aromatic heterocycles such as furan, thiophene, and pyrrole undergo Diels-Alder reactions despite their aromaticity and hence expected inertness. Furans have been especially used efficiently as dienes due to their electron-rich properties. Thiophenes and pyrroles are less reactive as dienes than furans. But pyrroles with A-elecIron-withdrawing substituents are efficient dienes. There exists a limited number of examples of five-membered, aromatic heterocycles acting as dienophiles in Diels-Alder reactions. Some nitro heteroaromatics serve as dienophiles in the Diels-Alder reactions. Heating a mixture of l-(phenylsulfonyl)-3-nitropyrrole and isoprene at 175 °C followed by oxidation results in the formation of indoles (see Eq. 8.22).35a A-Tosyl-3-nitroindole undergoes high-yielding Diels-Alder reactions with... [Pg.240]

Olefins and aromatic hydrogenation reaction are undesired in gasoline HDT unfortunately, they cannot be fully inhibited. The high requirement on hydrogenolysis, but low hydrogenation activity, makes CoMo the preferred catalysts. New catalysts are being offered by the manufactures for selective HDS. Speculatively, two concepts have been used to develop new selective catalyst (i) improve thiophene HDS, or (ii) passivate olefin hydrogenation. [Pg.26]


See other pages where Thiophenes and aromaticity is mentioned: [Pg.359]    [Pg.250]    [Pg.255]    [Pg.140]    [Pg.359]    [Pg.250]    [Pg.255]    [Pg.140]    [Pg.10]    [Pg.67]    [Pg.172]    [Pg.343]    [Pg.21]    [Pg.22]    [Pg.25]    [Pg.28]    [Pg.30]    [Pg.58]    [Pg.85]    [Pg.3]    [Pg.4]    [Pg.8]    [Pg.42]    [Pg.58]    [Pg.254]    [Pg.384]    [Pg.667]    [Pg.101]    [Pg.77]    [Pg.91]    [Pg.132]    [Pg.138]    [Pg.43]    [Pg.39]    [Pg.15]    [Pg.13]   
See also in sourсe #XX -- [ Pg.51 ]




SEARCH



Thiophene, and aromaticity

Thiophene, and aromaticity

Thiophenes aromaticity

© 2024 chempedia.info