Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thiazole relative aromaticity

Thiophene-1-oxide and 1 -substituted thiophenium salts present reduced aromaticity.144 A variety of aromaticity criteria were used in order to assess which of the 1,1-dioxide isomers of thiophene, thiazole, isothiazole, and thiadiazole was the most delocalized (Scheme 46).145 The relative aromaticity of those molecules is determined by the proximity of the nitrogen atoms to the sulfur, which actually accounts for its ability to participate in a push-pull system with the oxygen atoms of the sulfone moiety. The relative aromaticity decreases in the series isothiazole-1,1-dioxide (97) > thiazole-1,1 -dioxide (98) > thiophene-1-dioxide (99) then, one has the series 1,2,5 -thiadiazole-1,1 -dioxide (100) > 1, 2,4-thiadiaz-ole-1,1-dioxide (101) > 1,2,3-thiadiazole-1,1 -dioxide (102) > 1,3,4-thiadiazole-l,1-dioxide (103) in the order of decreasing aromaticity. As 1,2,5-thiadiazole-1,1-dioxide (100) was not synthesized, the approximations used extrapolations of data obtained for its 3,4-dimethyl-substituted analogue 104 (Scheme 46). [Pg.20]

TT-Electron delocalization in isoxazole seems to be more effective than in oxazole however, isothiazole is less aromatic than thiazole thus it is not a general rule that 1,2-diazoles possess higher aromaticity in comparison with 1,3-diazoles. Oxygen-containing heterocycles are always less aromatic than their sulfur and nitrogen counterparts, e.g. thiazole > imidazole > > oxazole. At the same time, the relative aromaticity of S- and N-containing heterocycles can interchange (pyrazole > isothiazole > isoxazole). [Pg.126]

Magnetic criteria have received wide application mainly as a qualitative test for aromaticity and antiaromaticity. The values of the exaltation of diamagnetic susceptibility (in 10-6A cm-3 mol-1), and therefore aromaticity, decrease in the sequence thiazole (17.0) > pyrazole (15.5) > sydnone (14.1). The relative aromaticity of heterocycles with a similar type of heteroatom can be judged from values of the chemical shifts of ring protons. The latter reveals paramagnetic shifts when Tr-electron delocalization is weakened. For example, in the series of isomeric naphthoimidazoles aromaticity decreases in the sequence naphthof 1,2-djimidazole (8 = 7.7-8.7 ppm) > naphtho[2,3- perimidine (8 = 6.1-7.2 ppm). This sequence agrees with other estimates, in particular with energetic criteria. [Pg.128]

The higher reactivity of 2-halogenothiazoles with respect to halogenopyridines can be related to the different aromaticity of the two systems, less for thiazole than for pyridine, for example, the relatively stronger fixation of the tt bond in the thiazole than in the case of pyridine. As the data reported in Table V-1 (footnote a) indicates, the free thiophenol is more reactive than the thiolate anion toward the 2-halogenothiazoles. This fact should be considered when one prepares the thiazolyl sulfides. [Pg.568]

NMR data for 4-methyloxazole have been compared with those of 4-methylthiazole the data clearly show that the ring protons in each are shielded. In a comprehensive study of a range of oxazoles. Brown and Ghosh also reported NMR data but based a discussion of resonance stabilization on pK and UV spectral data (69JCS(B)270). The weak basicity of oxazole (pX a 0.8) relative to 1-methylimidazole (pK 7.44) and thiazole (pK 2.44) demonstrates that delocalization of the oxygen lone pair, which would have a base-strengthening effect on the nitrogen atom, is not extensive. It must be concluded that not only the experimental measurement but also the very definition of aromaticity in the azole series is as yet poorly quantified. Nevertheless, its importance in the interpretation of reactivity is enormous. [Pg.33]

A wide variety of other heterocyclic ring systems can conceivably serve as the conjugated backbone in nonlinear organic molecules. We will give examples from preliminary work on two of these, the thiazole and pyrimidine heterocycle derivatives 65-72 in Table VIII. These two heterocycles were chosen because the appropriate haloderivatives are commercially available as starting materials for nucleophilic aromatic substitution. The pyrimidine derivatives are of particular interest since their absorption edges ( 400 nm) are shifted hypsochromically an additional 30 nm relative even to the pyridines. [Pg.75]

There has been considerable research into the electrolytic reduction of aromatic carboxylic acids to the corresponding aldehydes. A general procedure has been described in which key elements are the use of the ammonium salt of the acid, careful control of the pH and the presence of an organic phase (benzene) to extract the aldehyde and thus minimize overreduction. The method appears to work best for relatively acidic substrates for example, salicylaldehyde was obtained in 80% yield. Danish workers have shown that, under acidic conditions, controlled electrolytic reductions are possible for certain pyridine-, imidazole- and thiazole-carboxylic acids. In these cases, it is thought that the product aldehydes are protected by geminal diol formation. A chemical method which is closely related to electrolysis is the use of sodium amalgam as reductant. Although not widely used, it was successfully employed in the synthesis of a fluorinated salicylaldehyde. ... [Pg.285]

Another static approach that can give us the relative reactivity of heterocycles as dienes for Diels-Alder reactions is evaluation of their aromatic stability through the ring bond order uniformity. If, for a moment, we examine reactivity of the heterocycle on the basis of FMO energy gap with cyclopropene as a dienophile, it is obvious that the most reactive heterocycle is 1,3-thiazole. It had a FMO energy gap of only 9.609 eV (Table 26). That finding is almost... [Pg.539]

Thiazole does not have a relative diene character possessed by other heterocycles, unlike other heterocyclic structures such as 1,3-oxazole and furan. So 1,3-thiazoIe does not undergo Diels-AIder reactions very easily due to the its low reactivity on accoimt of greater aromaticity than oxazoles as well as due to highly nucleophilic thiazole. However, there are exceptions where an intramolecular Diels-AIder reaction of thiazole with alkyne activated by a methoxyl group is facilitated to produce a thiophene, albeit in a rather low yield of 48%, after three days at reflux in degassed mesitylene. This happens through the extrusion of acetonitrile. [Pg.299]

Thiazol-2-yl radicals, generated by the aprotic diazotization of 2-aminothiazole, interact with alkylbenzenes to yield principally 2-arylthiazoles. The relative rates and partial rate factors of this homolytic thiazolylation process have been measured. The influence of substituents on the radicals is related to their polar character, but is much smaller than that of substituents in aromatic substrates. ... [Pg.573]


See other pages where Thiazole relative aromaticity is mentioned: [Pg.67]    [Pg.193]    [Pg.81]    [Pg.342]    [Pg.386]    [Pg.33]    [Pg.302]    [Pg.237]    [Pg.250]    [Pg.682]    [Pg.51]    [Pg.268]    [Pg.33]    [Pg.33]    [Pg.179]    [Pg.353]    [Pg.360]    [Pg.652]    [Pg.33]    [Pg.686]    [Pg.237]    [Pg.250]    [Pg.682]    [Pg.511]    [Pg.299]    [Pg.1]    [Pg.77]    [Pg.410]    [Pg.246]    [Pg.757]    [Pg.198]    [Pg.614]    [Pg.618]    [Pg.373]   
See also in sourсe #XX -- [ Pg.373 ]




SEARCH



Relative aromaticity

Thiazole aromaticity

Thiazoles aromaticity

© 2024 chempedia.info