Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thiamine pyrophosphate pyruvate dehydrogenase

See also Thiamine Pyrophosphate, Pyruvate Dehydrogenase Complex, a-Ketoglutarate Dehydrogenase Complex... [Pg.435]

Naito E, Ito M, Yokota I, Saijo T, Matsuda J, Ogawa Y et al. Thiamine-responsive pyruvate dehydrogenase deficiency in two patients caused by a point mutation (F205L and L216F) within the thiamine pyrophosphate binding region. Biochim Biophys Acta 2002 1588 79-84. [Pg.1156]

See also Pyruvate Dehydrogenase Complex, Glycolysis, Thiamine Pyrophosphate, Pyruvate Decarboxylase... [Pg.1040]

The pyruvate dehydrogenase complex (PDC) is a noncovalent assembly of three different enzymes operating in concert to catalyze successive steps in the conversion of pyruvate to acetyl-CoA. The active sites of ail three enzymes are not far removed from one another, and the product of the first enzyme is passed directly to the second enzyme and so on, without diffusion of substrates and products through the solution. The overall reaction (see A Deeper Look Reaction Mechanism of the Pyruvate Dehydrogenase Complex ) involves a total of five coenzymes thiamine pyrophosphate, coenzyme A, lipoic acid, NAD+, and FAD. [Pg.644]

The mechanism of the pyruvate dehydrogenase reaction is a tour de force of mechanistic chemistry, involving as it does a total of three enzymes (a) and five different coenzymes—thiamine pyrophosphate, lipoic acid, coenzyme A, FAD, and NAD (b). [Pg.646]

Based on the action of thiamine pyrophosphate in catalysis of the pyruvate dehydrogenase reaction, suggest a suitable chemical mechanism for the pyruvate decarboxylase reaction in yeast ... [Pg.672]

A somewhat more trivial thing to remember about the HMP pathway is that this is one of the places you ve seen the vitamin thiamin pyrophosphate. This cofactor is necessary for the transketolase reaction that is in the middle of the HMP pathway. The transketolase reaction converts two C-5 sugars to a C-7 and a C-3. The other place you ve seen thiamin pyrophosphate as a cofactor is in the pyruvate dehydrogenase and a-ketoglutarate dehydrogenase reactions. [Pg.198]

The way in which thiamine participated in the oxidation of pyruvate became clearer when Lohmann and Schuster (1937) showed vitamin Bj to be present intracellularly as thiamine pyrophosphate. In yeast, decarboxylation of pyruvate yielded ethanal which was reduced by alcohol dehydrogenase to give ethanol. A cofactor was needed for this decarboxylation, co-carboxylase. Like the cofactor needed in animal cells for the decarboxylation of pyruvate, cocarboxylase was found to be identical to thiamine pyrophosphate. Vitamin Bj thus became the first vitamin whose intracellular function as a coenzyme had been established in vitro. Another aphorism therefore arose about vitamins—B vitamins are (parts of) coenzymes—an idea that was to be completely confirmed. [Pg.76]

Thiamine pyrophosphate is a coenzyme for several enzymes involved in carbohydrate metabolism. These enzymes either catalyze the decarboxylation of oi-keto acids or the rearrangement of the carbon skeletons of certain sugars. A particularly important example is provided by the conversion of pyruvic acid, an oi-keto acid, to acetic acid. The pyruvate dehydrogenase complex catalyzes this reaction. This is the key reaction that links the degradation of sugars to the citric acid cycle and fatty acid synthesis (chapters 16 and 18) ... [Pg.200]

Pyruvate dehydrogenase (lipoamide) [EC 1.2.4.1], which requires thiamin pyrophosphate, catalyzes the reaction of pyruvate with lipoamide to produce 5-acetyldihydroli-poamide and carbon dioxide. It is a component of the pyruvate dehydrogenase complex (which also includes dihydrolipoamide dehydrogenase [EC 1.8.1.4] and dihy-drolipoamide acetyltransferase [EC 2.3.1.12]). Pyruvate dehydrogenase (cytochrome) [EC 1.2.2.2] catalyzes the... [Pg.591]

Figure 7-1. Conversion of pyruvate to acetyl CoA by the pyruvate dehydrogenase complex. The three enzymes, pyruvate dehydrogenase, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase, exist in a complex associated with the mitochondrial matrix. Each enzyme requires at least one coenzyme that participates in the reaction. TPP, thiamine pyrophosphate Lip, lipoic acid CoA, coenzyme A. Figure 7-1. Conversion of pyruvate to acetyl CoA by the pyruvate dehydrogenase complex. The three enzymes, pyruvate dehydrogenase, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase, exist in a complex associated with the mitochondrial matrix. Each enzyme requires at least one coenzyme that participates in the reaction. TPP, thiamine pyrophosphate Lip, lipoic acid CoA, coenzyme A.
Thiamine (vitamin Bi) is phosphorylated by ATP to thiamine pyrophosphate. This is a coenzyme for, among others, alpha-ketoglutarate dehydrogenase, transketolase and pyruvate dehydrogenase. Thiamine pyrophosphate is involved in fatty acid... [Pg.473]

Fig. 9. A schematic drawing of a possible mechanism for the reaction catalyzed by the pyruvate dehydrogenase complex. The three enzymes Elf E2, and E3 are located so that lipoic acid covalently linked to E2 can rotate between the active sites containing thiamine pyrophosphate (TPP) and pyruvate (Pyr) on Elt CoA on E2, and FAD on E3. Acetyl-CoA and GTP are allosteric effectors of E, and NAD+ is an inhibitor of the overall reaction. Fig. 9. A schematic drawing of a possible mechanism for the reaction catalyzed by the pyruvate dehydrogenase complex. The three enzymes Elf E2, and E3 are located so that lipoic acid covalently linked to E2 can rotate between the active sites containing thiamine pyrophosphate (TPP) and pyruvate (Pyr) on Elt CoA on E2, and FAD on E3. Acetyl-CoA and GTP are allosteric effectors of E, and NAD+ is an inhibitor of the overall reaction.
In the first step, pyruvate is decarboxylated in an irreversible reaction catalyzed by pyruvate decarboxylase. This reaction is a simple decarboxylation and does not involve the net oxidation of pyruvate. Pyruvate decarboxylase requires Mg24" and has a tightly bound coenzyme, thiamine pyrophosphate, discussed below. In the second step, acetaldehyde is reduced to ethanol through the action of alcohol dehydrogenase, with... [Pg.538]

The conversion of pyruvate to ethanol occurs by the two reactions summarized in Figure 8.24. The decarboxylation of pyruvate by pyruvate decarboxylase occurs in yeast and certain microorganisms, but not in humans. The enzyme requires thiamine pyrophosphate as a coenzyme, and catalyzes a reaction similar to that described for pyruvate dehydrogenase (see p. 108). [Pg.103]

Coenzymes The pyruvate dehydrogenase complex contains five coenzymes that act as carriers or oxidants for the intermediates of the reactions shown in Figure 9.3. Ei requires thiamine pyrophosphate, Ep requires lipoic acid and coenzyme A, and E3 requires FAD and NAD+. [Note Deficiencies of thiamine or niacin can cause serious central nervous system problems. This is because brain cells are unable to produce sufficient ATP (via the TCA cycle) for proper function if pyruvate dehydrogenase is inactive.]... [Pg.108]

Pyruvate is decarboxylated to form a hydroxyethyl derivative bound to the reactive carbon of thiamine pyrophosphate, the coenzyme of pyruvate dehydrogenase. [Pg.108]

Mechanism of action of the pyruvate dehydrogenase complex. TPP = thiamine pyrophosphate L = lipoic acid. [Pg.108]

A. Structure of thiamine and its cofactor form, thiamine pyrophosphate. B. Structure of intermediate formed in the reaction catalyzed by pyruvate dehydrogenase. C. Structure of intermediate formed in the reaction catalyzed by a-keto-glutarate dehydrogenase. [Pg.376]

Reactions of the TCA cycle Enzyme that oxidatively decarboxylates pyruvate, its coenzymes, activators, and inhibitors REACTIONS OF THE TRICARBOXYLIC ACID CYCLE (p. 107) Pyruvate is oxidatively decarboxylated by pyruvate dehydrogenase complex producing acetyl CoA, which is the major fuel for the tricarboxylic acid cycle (TCA cycle). The irreversible set of reactions catalyzed by this enzyme complex requires five coenzymes thiamine pyrophosphate, lipoic acid, coenzyme A (which contains the vitamin pantothenic acid), FAD, and NAD. The reaction is activated by NAD, coenzyme A, and pyruvate, and inhibited by ATP, acetyl CoA, and NADH. [Pg.477]

There are two 2-oxoacid dehydrogenase multienzyme complexes in E. coli. One is specific for pyruvate, the other for 2-oxoglutarate. Each complex is about the size of a ribosome, about 300 A across. The pyruvate dehydrogenase is composed of three types of polypeptide chains El, the pyruvate decarboxylase (an a2 dimer of Mr — 2 X 100 000) E2, lipoate acetyltransferase (Mr = 80 000) and E3, lipoamide dehydrogenase (an a2 dimer of Mr = 2 X 56 000). These catalyze the oxidative decarboxylation of pyruvate via reactions 1.6, 1.7, and 1.8. (The relevant chemistry of the reactions of thiamine pyrophosphate [TPP], hydroxyethylthiamine pyrophosphate [HETPPJ, and lipoic acid [lip-S2] is discussed in detail in Chapter 2, section C3.)... [Pg.356]

The conversion of pyruvate to acetyl-CoA. The reactions are catalyzed by the enzymes of the pyruvate dehydrogenase complex. This complex has three enzymes pyruvate decarboxylase, dihydrolipoyl transacetylase, and dihydrolipoyl dehydrogenase. In addition, five coenzymes are required thiamine pyrophosphate, lipoic acid, CoASH, FAD, and NAD+. Lipoic acid is covalently attached to... [Pg.288]

Answer Thiamine is essential for the formation of thiamine pyrophosphate (TPP), one of the cofactors in the pyruvate dehydrogenase reaction. Without TPP, the pyruvate generated by glycolysis accumulates in cells and enters the blood. [Pg.174]

Answer Thiamine is required for the synthesis of thiamin pyrophosphate (TPP), a prosthetic group in the pyruvate dehydrogenase and a-ketoglutarate dehydrogenase complexes. A thiamin deficiency reduces the activity of these enzyme complexes and causes the observed accumulation of precursors. [Pg.177]

Pyruvate produced by the glycolytic pathway may be transported into the mitochondria (via an antiport with OH"), where it is converted to acetyl-CoA by the action of the enzyme complex pyruvate dehydrogenase. The pertinent enzyme activities are pyruvate dehydrogenase (PD), lipoic acid acetyltransferase, and dihydrolipoic acid dehydrogenase. In addition, several cofactors are utilized thiamine pyrophosphate (TPP), lipoic acid, NAD+, Co A, and FAD. Only Co A and NAD+ are used in stoichiometric amounts, whereas the others are required in catalytic amounts. Arsenite and Hg2+ are inhibitors of this system. The overall reaction sequence may be represented by Figure 18.5. The NADH generated may enter the oxidative phosphorylation pathway to generate three ATP molecules per NADH molecule reduced. The reaction is practically irreversible its AGq = -9.4 kcal/mol. [Pg.471]

Figure 18.6 The pyruvate dehydrogenase pathway and its regulation. TPP is thiamine pyrophosphate. Figure 18.6 The pyruvate dehydrogenase pathway and its regulation. TPP is thiamine pyrophosphate.
Figure 7-2. Reactions of the pyruvate dehydrogenase (PDU) multienzyme complex (PDC). Pyruvate is decarboxylated by the PDH subunit (I ,) in the presence of thiamine pyrophosphate (TPP). The resulting hydroxyethyl-TPP complex reacts with oxidized lipoamide (LipS3), the prosthetic group of dehydrolipoamide transacetylase (Ii2), to form acetyl lipoamide. In turn, this intermediate reacts with coenzyme A (CoASH) to yield acetyl-CoA and reduced lipoamide [Lip(SH)2]. The cycle of reaction is completed when reduced lipoamide is reoxidized by the flavoprotein, dehydrolipoamide dehydrogenase (E3). Finally, the reduced flavoprotein is oxidized by NAD+ and transfers reducing equivalents to the respiratory chain via reduced NADH. PDC is regulated in part by reversible phosphorylation, in which the phosphorylated enzyme is inactive. Increases in the in-tramitochondrial ratios of NADH/NAD+ and acetyl-CoA/CoASH also stimulate kinase-mediated phosphorylation of PDC. The drug dichloroacetate (DCA) inhibits the kinase responsible for phosphorylating PDC, thus locking the enzyme in its unphosphory-lated, catalytically active state. Reprinted with permission from Stacpoole et al. (2003). Figure 7-2. Reactions of the pyruvate dehydrogenase (PDU) multienzyme complex (PDC). Pyruvate is decarboxylated by the PDH subunit (I ,) in the presence of thiamine pyrophosphate (TPP). The resulting hydroxyethyl-TPP complex reacts with oxidized lipoamide (LipS3), the prosthetic group of dehydrolipoamide transacetylase (Ii2), to form acetyl lipoamide. In turn, this intermediate reacts with coenzyme A (CoASH) to yield acetyl-CoA and reduced lipoamide [Lip(SH)2]. The cycle of reaction is completed when reduced lipoamide is reoxidized by the flavoprotein, dehydrolipoamide dehydrogenase (E3). Finally, the reduced flavoprotein is oxidized by NAD+ and transfers reducing equivalents to the respiratory chain via reduced NADH. PDC is regulated in part by reversible phosphorylation, in which the phosphorylated enzyme is inactive. Increases in the in-tramitochondrial ratios of NADH/NAD+ and acetyl-CoA/CoASH also stimulate kinase-mediated phosphorylation of PDC. The drug dichloroacetate (DCA) inhibits the kinase responsible for phosphorylating PDC, thus locking the enzyme in its unphosphory-lated, catalytically active state. Reprinted with permission from Stacpoole et al. (2003).
Fig. 12-7 The reactions of the pyruvate dehydrogenase complex. The reactants in the overall reaction are shown in boxes. E, = pyruvate decarboxylase (TPP = thiamine pyrophosphate as prosthetic group), E2 = dihydrolipoyl trans-acetylase (oxidized lipoic acid as prosthetic group). E3 = dihydrolipoyl dehydrogenase (FAD as prosthetic group). Fig. 12-7 The reactions of the pyruvate dehydrogenase complex. The reactants in the overall reaction are shown in boxes. E, = pyruvate decarboxylase (TPP = thiamine pyrophosphate as prosthetic group), E2 = dihydrolipoyl trans-acetylase (oxidized lipoic acid as prosthetic group). E3 = dihydrolipoyl dehydrogenase (FAD as prosthetic group).

See other pages where Thiamine pyrophosphate pyruvate dehydrogenase is mentioned: [Pg.306]    [Pg.207]    [Pg.191]    [Pg.306]    [Pg.207]    [Pg.191]    [Pg.1092]    [Pg.7]    [Pg.430]    [Pg.631]    [Pg.543]    [Pg.137]    [Pg.455]    [Pg.126]    [Pg.504]    [Pg.121]    [Pg.605]    [Pg.683]    [Pg.110]    [Pg.112]    [Pg.114]    [Pg.634]    [Pg.473]    [Pg.78]    [Pg.352]   
See also in sourсe #XX -- [ Pg.116 , Pg.352 ]




SEARCH



Pyruvate dehydrogenase

Pyruvate dehydrogenases

Thiamin pyrophosphate

Thiamine dehydrogenase

Thiamine pyrophosphate

© 2024 chempedia.info