Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1,2,3-Thiadiazoles, elimination

When the nitrogen nucleophile is replaced by a sulfur nucleophile, thiadiazoles can be formed. Thus, as shown in Scheme 7, the 5-amino-l,2,4-oxadiazole 78 gives the photolytic intermediate 79, which is intercepted by a thiourea to give intermediate 80, followed by ring closure and elimination to give the thiadiazoles 81 <1997T12629>. [Pg.255]

Ethyl-l,2,3-thiadiazole 44 is readily brominated at its pseudo benzylic position and subsequent elimination afforded the vinyl thiadiazole 45 (Scheme 5) <1986LA1334, 1986LA1344>. To prevent polymerization of the vinyl thiadiazole, hydroquinone was added during the elimination step. [Pg.477]

The oxidation of acetylthiourea and phenylthiourea to afford the corresponding 1,2,4-thiadiazoles has been reported using [bis(acyloxy)iodo]arenes as the oxidants. The proposed mechanism involves the formation of a polyvalent iodine compound 74. After the elimination of iodobenzene, the 1,6-dip he nyl-dithioformamidine 75 is formed, which is set up to undergo a further oxidation to give the bis 3,5-diamino-l,2,4-thiadiazole 76 (Scheme 7) <2003T7521>. [Pg.502]

The preparation of the 3-hydroxy-4-vinyl-l,2,5-thiadiazole 112 via oxidative elimination of the thioether 111 according to the published procedure <1966JOC1964> gave unsatisfactory results leading the authors to develop a one-pot procedure for the preparation of the vinylthiadiazole (Equation 19) <2004TL5441>. [Pg.537]

The introduction of sulfur between two ortho amino groups is the oldest and still the most commonly used route to benzo- and heteroarene-fused 1,2,5-thiadiazoles. The reaction has been extensively reviewed in both CHECK 1984) and CHEG-II(1996). The in situ preparation of Ar-sulfinylanilinc via /3-elimination of chloroform from trichlorometh-anesulfinamides 200 was recently supported by trapping with 1,2-benzenediamine to give the benzothiadiazole 2 in 85% yield (Equation 43) <1997TL487>. [Pg.549]

A-Alkylpyrroles undergo cycloaddition reactions with trithiazyl trichloride (NSC1)3 to afford, depending on the substituents R1, R2, and R3, thiadiazoles 216-218. The reactions are proposed to proceed by addition of the N-S(C1)-N fragment across the 2,3- and the 4,5-bonds of the A-alkylpyrrole, followed by a series of eliminations to give the observed products (Equation 49) <1997CC1493, 1997J(P 1)3189>. [Pg.553]

Tandem mass spectrometry (70eVEI) performed on 5-amino-l,3,4-thiadiazole-2-thiol 26 gave a weak abundance peak at m/z 78 Da (2%) corresponding to the [CH2S2]+ ion (Equation 1) <1999PCA5123>. The linked-scan spectra of the parent ion (M+) and the ion at mfz 106 showed that loss of HNC followed by N2 elimination accounted for the... [Pg.573]

Alkyl and aryl thiohydrazide derivatives react with orthoesters and trihalomethyls to afford 1,3,4-thiadiazoles. The reactions proceed via a thiosemicarbazone intermediate which cyclizes to eliminate either alcohol or hydrogen chloride. Treatment of the iV-thiohydrazide pyrazole 143 with triethyl orthoformate in acetic acid at reflux gave the 5-acetamido-l,3,4-thiadiazol-2-ylpyrazole 144 (Equation 51), and in the absence of acetic acid the 5-amino-l,3,4-thiadiazol-2-ylpyrazole 145 in 76% yield <2000JCM544>. [Pg.594]

Alkyl and aryl nitriles 151 react with thiosemicarbazide 138 under acidic conditions to give 1,3,4-thiadiazoles (Scheme 14 and Table 8) <1995BML1995, 1996IJB273, 1997IJB394>. The acidic conditions promote the elimination of ammonia from the intermediate iminothioacylhydrazine 152. [Pg.595]

The reaction of a fourfold excess of aryldiazomethanes 130 with dichlorosulfine leads to 3,5-diaryl[l,2,4]triazolo[5,l+]-[l,3,4]thiadiazole-4-oxides 131. The formation of the fused heterocycles 131 is rationalized on the basis of two consecutive cycloaddition steps, each followed by elimination of hydrogen chloride promoted by the excess of aryldiazomethane (Scheme 9) <1984JCM175>. [Pg.343]

One procedure for the synthesis of these title ring systems appeared recently <2003S1079>. Yadav and Kapoor described that the transformation of some oxadiazole and thiadiazole derivatives bearing specially substituted methylsulfinyl side chain 131, when reacted with thionyl chloride, give ring-closed compounds 134. The reaction was carried out in pyridine under reflux conditions in 74-79% yield. As shown in Scheme 25, the authors assume that the first step is the formation of the sulfonium salt 132 which undergoes cyclization with hydrogen chloride and sulfur dioxide elimination to 133 and, finally, demethylation of this intermediate leads to the final product 134. [Pg.864]

Because of its importance in biological areas, special efforts have been made with the synthesis of the thiazolo[2,3-t]-[l,2,4]thiadiazole derivative 308 <2001BML1805>. The pathway started from the benzothiazole derivative 305 which was treated with chlorosulfonylacetyl chloride to form an intermediate 306, which underwent cyclization to a second intermediate 307 with hydrogen chloride elimination. The last step is the attack of the first intermediate 306 at the thiadiazine carbon atom to form the final product 308. [Pg.995]

When planning reactions of thiocarbonyl compounds with electrophilic carbene complexes it should be taken into aceount that thiocarbonyl compounds can undergo uncatalyzed 1,3-dipolar cycloaddition with acceptor-substituted diazomethanes to yield 1,3,4-thiadiazoles. These can either be stable or eliminate nitrogen to yield thiiranes or other products similar to those resulting from thiocarbonyl ylides [1338]. [Pg.216]

However, there are some cases when an unpaired electron is localized not on the n, but on the o orbital of an anion-radical. Of course, in such a case, a simple molecular orbital consideration that is based on the n approach does not coincide with experimental data. Chlorobenzothiadiazole may serve as a representative example (Gul maliev et al. 1975). Although the thiadiazole ring is a weaker acceptor than the nitro group, the elimination of the chloride ion from the 5-chlorobenzothiadiazole anion-radical does not take place (Solodovnikov and Todres 1968). At the same time, the anion-radical of 7-chloroquinoline readily loses the chlorine anion (Fujinaga et al. 1968). Notably, 7-chloroquinoline is very close to 5-chlorobenzothiadiazole in the sense of structure and electrophilicity of the heterocycle. To explain the mentioned difference, calculations are needed to clearly take into account the o electron framework of the molecules compared. It would also be interesting to exploit the concept of an increased valency in the consideration of anion-radical electronic structures, especially of those anion-radicals that contain atoms (fragments) with available d orbitals. This concept is traditionally derived from valence-shell expansion through the use of d orbital, but it is also understandable in terms of simple (and cheaper for calculations) MO theory, without t(-orbital participation. For a comparative analysis refer the paper by ElSolhy et al. (2005). Solvation of intermediary states on the way to a final product should be involved in the calculations as well (Parker 1981). [Pg.8]

From the reaction of imidazole 161 and aromatic acid halides (Scheme 63), imidoyl chlorides 162 are obtained, which eliminate methyl chloride to form imidazo[2,l-6]l,3,4]thiadiazoles 163 upon extended heating (88H1935). [Pg.195]

A direct aza-Wittig cyclization to triazolotriazine 176 (Scheme 67) takes place when triazinone 174 is treated with diphenylthiourea, the latter being substituted on the nitrogen. Elimination of triphenylphosphane sulfide from 175 makes 1,2,4-triazole accessible [86JCS(P1)2037]. When the nucleophilic attack continues on the sulfur, thiadiazoles are formed [86JCS(P1)2037]. [Pg.197]

Thermolysis of the thiadiazole (164) leads to elimination of isocyanate and sulfur giving the triazine derivative (167). If the thermolysis is carried out in the presence of phenols 2-aryl-benzimidazoles (168) are produced <85JCS(P1)1007>. The S—N bond of (157) is readily cleaved with both N- and C-nucleophiles. Thus, treatment of (157) with an excess of amine gives the sulfenamide (169) (Scheme 39) and reaction of (157) with active methylene compounds leads to derivatives of type (170) (Scheme 39) which on heating furnish (171). Cyanide ion inserts into the S—N bond of (164), probably via the intermediate (172) which immediately recyclizes to give the thiadiazinone (173) (Scheme 40) <85JCS(P1)1007>. [Pg.330]

In a variation of this approach the reaction of amidrazone ylides (230) with both alkyl and aryl isothiocyanates yields thiocarbonyl substituted amidrazone ylides (231) which can be thermally cyclized to 5-amino-1,2,4-thiadiazoles (232) with the elimination of trimethylamine (Scheme 50) <81JHC201>. [Pg.338]

Metallation of 3,4-dimethyl-l,2,5-thiadiazole (55) to the anion (56) was accomplished with the use of a nonnucleophilic base, lithium diisopropylamide <82JHC1247>. Nucleophilic attack at sulfur resulted in an alkyllithium reagent <70CJC2006>. The lithiomethyl derivative (56) was carboxylated to (57) with carbon dioxide and converted to the vinyl derivative (58) via an esterification, reduction, mesylation, and base elimination sequence (Scheme 12). [Pg.369]

Over the past two decades, important contributions to the chemistry of thiocarbonyl ylides were made by Huisgen et al. (27). By carrying out the reaction of thiobenzophenone with diazomethane at low temperature, formation of 2,5-dihydro-l,3,4-thiadiazole (15) with subsequent elimination of N2 was established as the route to the reactive thiobenzophenone (S)-methylide (16) (17,28). In the absence of intercepting reagents, 16 undergoes electrocyclization to give 17 or head-to-head dimerization to yield 1,4-dithiane 18 (Scheme 5.3). [Pg.318]

In some instances, sterically encumbered 2,5-dihydro-l,3,4-thiadiazoles do not eliminate nitrogen. Instead, cycloreversion leading to the starting materials or a new pair of diazo- and thiocarbonyl compounds was reported. Thus, a crystalline product of type 20, obtained from di(ferf-butyl)diazomethane and 2-benzyl-4,4-dimethyl-l,3-thiazole-5(477)-thione, was found to dissociate in solution to give the starting materials (42). In the case of (ferf-butyl)(trimethylsilyl)thioketone and... [Pg.319]

As mentioned previously, 2,5-dihydro-l,3,4-thiadiazoles obtained from aromatic thioketones and diazomethane readily eliminate N2 at -45 °C. (53-Methylides... [Pg.328]

The preparation of thiiranes is most conveniently performed in solution. However, there are also protocols reported for reaction in the gas and solid phase. By using diazo and thiocarbonyl compounds in ether as solvent, both alkyl and aryl substituted thiiranes are accessible. As indicated earlier, aryl substituents destabilize the initially formed 2,5-dihydro-1,3,4-thiadiazole ring and, in general, thiiranes are readily obtained at low temperature (13,15,35). On the other hand, alkyl substituents, especially bulky ones, enhance the stability of the initial cycloadduct, and the formation of thiiranes requires elevated temperatures (36 1,88). Some examples of sterically crowded thiiranes prepared from thioketones and a macro-cyclic diazo compound have been published by Atzmiiller and Vbgtle (106). Diphenyldiazomethane reacts with (arylsulfonyl)isothiocyanates and this is followed by spontaneous N2 elimination to give thiirane-2-imines (60) (107,108). Under similar conditions, acyl-substituted isothiocyanates afforded 2 1-adducts 61 (109) (Scheme 5.23). It seems likely that the formation of 61 involves a thiirane intermediate analogous to 60, which subsequently reacts with a second equivalent... [Pg.329]

Treatment of the symmetrical triaminopyrimidine (50-1) with sulfuryl chloride ties up the two adjacent amines in a thiadiazole ring, protecting those groups from attacks in subsequent reactions. Reaction of the product (50-2) with ortho difluorinated benzylamine (50-3) results in the replacement of the pyrimidine amino group by that in the reagent most hkely by an addition-elimination sequence to afford (50-4). That amino group is then converted to the formamide (50-5) with formic acid. Exposure of the product to Raney nickel leads to a loss of sulfur and the formation of the transient intermediate (50-6). This cyclizes to a purine... [Pg.610]

A number of annelated 1,3,4,6-thiatriazepines (613) have been prepared by the reactions of the sodium salts of cyclic thioureas with dichlorodiazabutadienes (612). Acyclic thioureas take an alternative reaction path via the elimination of a carbodiimide to give only 2,5-diphenyl-l,3,4-thiadiazole (80CC156). An X-ray structure determination on (613 n = 2) shows that the seven-membered ring has the expected boat conformation and that ring fusion does not appear to strain the five-membered ring <81AX(B)486>. [Pg.650]

Amidoximes (46) were first used as a source of 1,2,4-thiadiazoles in 1889 their condensation with carbon disulfide or with an excess of aryl isothiocyanate yields 3-aryl-5-mercapto- (47)6 -73 or 3-aryl-5-aryl-amino- 1,2,4-thiadiazoles (50),71,74,75 respectively. The latter reaction has been reexamined and discussed by Gheorgiu and Barbos76 who suggest that an initial addition of two moles of phenyl isothiocyanate to one of benzamidoxime is followed by cyclization of the intermediate (49), with elimination of phenylthiocarbamic acid (51). Decomposition of the latter gives rise to the by-products observed (cf. following scheme). [Pg.133]


See other pages where 1,2,3-Thiadiazoles, elimination is mentioned: [Pg.147]    [Pg.279]    [Pg.166]    [Pg.132]    [Pg.473]    [Pg.502]    [Pg.545]    [Pg.577]    [Pg.720]    [Pg.752]    [Pg.108]    [Pg.115]    [Pg.330]    [Pg.359]    [Pg.360]    [Pg.391]    [Pg.405]    [Pg.639]    [Pg.735]    [Pg.570]    [Pg.574]    [Pg.128]   


SEARCH



1,2,3-thiadiazole

1,2,5-Thiadiazoles

1,3,4-Thiadiazol

© 2024 chempedia.info