Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermotropic phase, cellulosic mesophases

Lyotropic Phases. Lyotropic cellulosic mesophases can be observed in a large variety of solvents with derivatives that can be thermotropic (ethylcellulose, hydroxypropylcellulose, acetoxypropylcellulose, etc.) or not (cellulose acetate). [Pg.144]

Ethoxypropyl cellulose [59], an ethyl ether of HPC forms excellent thermotropic and lyotropic mesophases, the lyotropic ones with acetonitrile, dioxane, and methanol. Both thermotropic and lyotropic systems exhibit cholesteric phases with a right-handed helicoidal supermolecular structure,... [Pg.477]

Many cellulose derivatives form lyotropic liquid crystals in suitable solvents and several thermotropic cellulose derivatives have been reported (1-3) Cellulosic liquid crystalline systems reported prior to early 1982 have been tabulated (1). Since then, some new substituted cellulosic derivatives which form thermotropic cholesteric phases have been prepared (4), and much effort has been devoted to investigating the previously-reported systems. Anisotropic solutions of cellulose acetate and triacetate in tri-fluoroacetic acid have attracted the attention of several groups. Chiroptical properties (5,6), refractive index (7), phase boundaries (8), nuclear magnetic resonance spectra (9,10) and differential scanning calorimetry (11,12) have been reported for this system. However, trifluoroacetic acid causes degradation of cellulosic polymers this calls into question some of the physical measurements on these mesophases, because time is required for the mesophase solutions to achieve their equilibrium order. Mixtures of trifluoroacetic acid with chlorinated solvents have been employed to minimize this problem (13), and anisotropic solutions of cellulose acetate and triacetate in other solvents have been examined (14,15). The mesophase formed by (hydroxypropyl)cellulose (HPC) in water (16) is stable and easy to handle, and has thus attracted further attention (10,11,17-19), as has the thermotropic mesophase of HPC (20). Detailed studies of mesophase formation and chain rigidity for HPC in dimethyl acetamide (21) and for the benzoic acid ester of HPC in acetone and benzene (22) have been published. Anisotropic solutions of methylol cellulose in dimethyl sulfoxide (23) and of cellulose in dimethyl acetamide/ LiCl (24) were reported. Cellulose tricarbanilate in methyl ethyl ketone forms a liquid crystalline solution (25) with optical properties which are quite distinct from those of previously reported cholesteric cellulosic mesophases (26). [Pg.370]

On the other hand, literature data show [16] that different cellulose derivatives which form liquid crystalline solutions in organic solvents may also form cholesteric thermotropic phases in the absence of a solvent—with spontaneous molecular orientation and cholesteric reflection, such as 2-acetoxypropyl cellulose, 2-hydroxypropyl cellulose, the trifluoroacetate ester of hydroxypropyl cellulose, the propanoate ester of hydroxypropyl cellulose, the benzoate ester of hydroxypropyl cellulose, 2-ethoxypropyl cellulose, acetoacetoxypropyl cellulose, trifluoroacetoxypropyl cellulose, the phenylac-etate and 3-phenylpropionate of hydroxypropyl cellulose, phenylacetoxy, 4-methoxy-phenylacetoxy, p-tolylacetoxy cellulose, trimethylsilyl cellulose, trialkyl cellulose, cellulose trialkanoate, the trialkyl ester of (tri-o-carboxymethyl) cellulose, 6-o-a-(l-methylnaphthalene)-2,3-o-pentyl cellulose, etc. Moreover, the suspensions of cellulose crystallites spontaneously form the chiral nematic phase. The formation of mesophase suspension of cellulose crystalHtes varies from one type of cellulose to another, being influenced, in the formation of the chiral nematic phase, by the mineral acid selected... [Pg.365]

Besides being capable of forming lyotropic liquid crystalline phases, cellulose derivatives can also originate thermotropic mesophases in the absence of any solvent. [Pg.343]

Many cellulose derivatives form Hquid crystalline phases, both in solution (lyotropic mesophases) and in the melt (thermotropic mesophases). The first report (96) showed that aqueous solutions of 30% hydroxypropylceUulose [9004-64-2] (HPC) form lyotropic mesophases that display iridescent colors characteristic of the chiral nematic (cholesteric) state. The field has grown rapidly and has been reviewed from different perspectives (97—101). [Pg.243]

There are now numerous examples of cellulose derivatives that form both lyotropic and thermotropic mesophases. Of course, cellulose itself is unlikely to form a thermotropic liquid crystalline phase because it decomposes prior to melting. [Pg.268]

Cellulose and some derivatives form liquid crystals (LC) and represent excellent materials for basic studies of this subject. A variety of different structures are formed, thermotropic and lyotropic LC phases, which exhibit some unusual behavior. Since chirality expresses itself on the configuration level of molecules as well as on the conformation level of helical structures of chain molecules, both elements will influence the twisting of the self-assembled supermolecular helicoidal structure formed in a mesophase. These supermolecular structures of chiral materials exhibit special optical properties as iridescent colors, and... [Pg.453]

Chiral mesophases can be obtained from sugars by several strategies. Many cellulose derivatives show thermotropic and lyotropic cholesteric phases [16]. Peracylated sugars can be used as chiral dopants for discoid nematic phases [17]. Also classical cholesteric and ferroelectric phases can be obtained from carbohydrate-based compounds [18]. In this case, chiral oxa-heterocycles are prepared from sugars. Figure 4.8 shows a chiral twin compound prepared from mannitol [19]. [Pg.105]


See other pages where Thermotropic phase, cellulosic mesophases is mentioned: [Pg.356]    [Pg.135]    [Pg.270]    [Pg.218]    [Pg.593]    [Pg.271]    [Pg.344]    [Pg.350]    [Pg.368]    [Pg.42]   
See also in sourсe #XX -- [ Pg.143 , Pg.145 ]




SEARCH



Cellulose mesophases

Cellulose phases

Cellulose thermotropic mesophases

Cellulosic mesophases

Mesophase

Mesophases

Phase cellulosics

Thermotropic cellulosics

Thermotropic mesophase

Thermotropic phases

Thermotropism

© 2024 chempedia.info