Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermogravimetry technique

Knudsen effusion/thermogravimetry technique, extrapolated Clausius-Clapeyron eq., Oja Suuberg 1998)... [Pg.711]

Karacan and Kok recently studied the pyrolysis of two crude oils and their SARA fraetions." Differential scanning calorimetry and thermogravimetry techniques were used to evaluate the pyrolysis behaviour of the feedstoeks. The results indicated that the pyrolysis mechanisms depend on the nature of the constituents. Thermogravimetric data showed that asphaltenes are the main contributors to coke formation and that resins are a second contributor. The weight loss for the SARA components was additive. The authors argued that each fraction in a whole crude oil follows its own reaction pathway and there is no interaction or S5mergy between the components. [Pg.169]

TG/MS. thermogravimetry and mass spectrometry used as a combined technique... [Pg.447]

Thermal analysis iavolves techniques ia which a physical property of a material is measured agaiast temperature at the same time the material is exposed to a coatroUed temperature program. A wide range of thermal analysis techniques have been developed siace the commercial development of automated thermal equipment as Hsted ia Table 1. Of these the best known and most often used for polymers are thermogravimetry (tg), differential thermal analysis (dta), differential scanning calorimetry (dsc), and dynamic mechanical analysis (dma). [Pg.149]

The procedures of measuring changes in some physical or mechanical property as a sample is heated, or alternatively as it is held at constant temperature, constitute the family of thermoanalytical methods of characterisation. A partial list of these procedures is differential thermal analysis, differential scanning calorimetry, dilatometry, thermogravimetry. A detailed overview of these and several related techniques is by Gallagher (1992). [Pg.240]

Thermal analysis helps in measuring the various physical properties of the polymers. In this technique, a polymer sample is subjected to a controlled temperature program in a specific atmosphere and properties are measured as a function of temperature. The controlled temperature program may involve either isothermal or linear rise or fall of temperature. The most common thermoanalytical techniques are (1) differential scanning analysis (DSC), (2) thermomechanical analysis (TMA), and (3) thermogravimetry (TG). [Pg.655]

Since thermogravimetry is a dynamic technique, convection currents arising in a furnace will cause a continuous change in the gas atmosphere. The exact nature of this change further depends upon the furnace characteristics so that widely differing thermogravimetric data may be obtained from different designs of thermobalance. [Pg.432]

Thermogravimetry is a valuable technique for the assessment of the purity of materials. Analytical reagents, especially those used in titrimetric analysis as primary standards, e.g. sodium carbonate, sodium tetraborate, and potassium hydrogenphthalate, have been examined. Many primary standards absorb appreciable amounts of water when exposed to moist atmospheres. TG data can show the extent of this absorption and hence the most suitable drying temperature for a given reagent may be determined. [Pg.432]

The techniques referred to above (Sects. 1—3) may be operated for a sample heated in a constant temperature environment or under conditions of programmed temperature change. Very similar equipment can often be used differences normally reside in the temperature control of the reactant cell. Non-isothermal measurements of mass loss are termed thermogravimetry (TG), absorption or evolution of heat is differential scanning calorimetry (DSC), and measurement of the temperature difference between the sample and an inert reference substance is termed differential thermal analysis (DTA). These techniques can be used singly [33,76,174] or in combination and may include provision for EGA. Applications of non-isothermal measurements have ranged from the rapid qualitative estimation of reaction temperature to the quantitative determination of kinetic parameters [175—177]. The evaluation of kinetic parameters from non-isothermal data is dealt with in detail in Chap. 3.6. [Pg.23]

Electrobalances suitable for thermogravimetry are readily adapted for measurements of magnetic susceptibility [333—336] by the Faraday method, with or without variable temperature [337] and data processing facilities [338]. This approach has been particularly valuable in determinations of the changes in oxidation states which occur during the decompositions of iron, cobalt and chromium oxides and hydroxides [339] and during the formation of ferrites [340]. The method requires higher concentrations of ions than those needed in Mossbauer spectroscopy, but the apparatus, techniques and interpretation of observations are often simpler. [Pg.31]

This paper reviews recycling technologies of PMMA waste, its applications and its markets. It relates in detail experimentation on thermal and oxidative depolymerisation of PMMA scrap, under nitrogen and oxygen atmospheres, at different heating rates by thermogravimetry and differential scanning calorimetry techniques. 15 refs. [Pg.76]

In this chapter we have limited ourselves to the most common techniques in catalyst characterization. Of course, there are several other methods available, such as nuclear magnetic resonance (NMR), which is very useful in the study of zeolites, electron spin resonance (ESR) and Raman spectroscopy, which may be of interest for certain oxide catalysts. Also, all of the more generic tools from analytical chemistry, such as elemental analysis, UV-vis spectroscopy, atomic absorption, calorimetry, thermogravimetry, etc. are often used on a routine basis. [Pg.166]

However, if we set the furnace temperature just slightly greater than T2, we would obtain a reaction limited to that of A - B, and thus could identily the intermediate reaction product, B. This technique is called isothermal thermogravimetry. Thus, we can follow a solid state reaction by first surveying via d3mamic TGA. If there are any intermediate products, we can isolate each in turn, and after cooling (assmning each is stable at room temperature) cam identify it by x-ray analysis. Note that we can obtain an assay easily ... [Pg.385]

Mass Loss Rate as a Function of Temperature. The most commonly used technique is thermogravimetry (TG). The basic components of modern TG have existed since the early part of this century (22-2 4). [Pg.544]

The number of experimental factors which influence the results increases considerably when thermogravimetry is combined with other techniques such as DTA, gas chromatography46, mass spectrometry, X-ray etc. A systematic discussion of all these additional factors would lead too far, therefore only a representative example will be discussed here. One of the often-applied multiple techniques is the combination TG-DTA. Besides the actual thermal reactions of the sample, the important factors in DTA are the heat capacity and the thermal conductivity of the sample. Optimum heat transfer is required for such thermoanalytical measurements therefore the shape of the sample and its contact with the crucible is of special importance. [Pg.118]

Thermal analytical techniques such as thermogravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC) have all been successfully employed in studying the pyrotechnic reactions of energetic materials such as black powder, as well as of binary mixtures of the constituents. [Pg.30]

The research papers which originated in the last couple of years in different countries in this field indicate that ED and Er are not generally reported and there is an emphasis on the study of comprehensive thermal behavior of explosives as a function of temperature or time by means of different thermal analytical techniques. Most commonly used methods of thermal analysis are differential thermal analysis (DTA), thermogravimetric analysis (TGA) or thermogravimetry and differential scanning calorimetry (DSC). [Pg.183]


See other pages where Thermogravimetry technique is mentioned: [Pg.297]    [Pg.515]    [Pg.612]    [Pg.243]    [Pg.51]    [Pg.542]    [Pg.297]    [Pg.515]    [Pg.612]    [Pg.243]    [Pg.51]    [Pg.542]    [Pg.241]    [Pg.32]    [Pg.10]    [Pg.429]    [Pg.6]    [Pg.572]    [Pg.249]    [Pg.477]    [Pg.325]    [Pg.136]    [Pg.69]    [Pg.106]    [Pg.276]    [Pg.72]    [Pg.112]    [Pg.375]    [Pg.117]    [Pg.185]    [Pg.567]    [Pg.578]    [Pg.276]    [Pg.276]    [Pg.1609]    [Pg.690]    [Pg.690]    [Pg.691]   
See also in sourсe #XX -- [ Pg.120 , Pg.232 ]

See also in sourсe #XX -- [ Pg.382 ]




SEARCH



Thermogravimetry

© 2024 chempedia.info