Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics overview

Crystal structure, crystal defects and chemical reactions. Most chemical reactions of interest to materials scientists involve at least one reactant in the solid state examples inelude surfaee oxidation, internal oxidation, the photographie process, electrochemieal reaetions in the solid state. All of these are critieally dependent on crystal defects, point defects in particular, and the thermodynamics of these point defeets, especially in ionic compounds, are far more complex than they are in single-component metals. I have spaee only for a superficial overview. [Pg.121]

Such an analysis requires a clear understanding of the CVD process and a review of several fundamental considerations in the disciplines of thermodynamics, kinetics, and chemistry is in order. It is not the intent here to dwell in detail on these considerations but rather provide an overview which shouldbe generally adequate. More detailed investigations of the theoretical aspects of CVD are given in Refs. 1-3. [Pg.37]

Taking a final overview of proteins we have to observe how remarkably suitable they are as semi-soft materials. The different variety of sequences and the different ways their folds enable them to act in a variety of ways within the temperature range of water may well be unique. Remember that their value rests not just in structure but in structure associated with thermodynamically controlled features, i.e. concentration, mobility, and temperature. These structures are dynamic and are an essential feature of physical flow, e.g. of electrons and protons and metabolic activity and as such their connectivity is of the essence of energy uptake and degradation. [Pg.167]

The objective of this first part of the book is to explain in a chemically intelligible fashion the physical origin of microwave-matter interactions. After consideration of the history of microwaves, and their position in the electromagnetic spectrum, we will examine the notions of polarization and dielectric loss. The orienting effects of the electric field, and the physical origin of dielectric loss will be analyzed, as will transfers between rotational states and vibrational states within condensed phases. A brief overview of thermodynamic and athermal effects will also be given. [Pg.2]

In recent years, the amount of research time devoted to materials chemistry has risen almost exponentially and sulfur-based radicals, such as the charge-transfer salts based upon TTF (tetrathiafulvalene), have played an important role in these developments. These TTF derivatives will not be discussed here but are dealt with elsewhere in this book. Instead we focus on recent developments in the area of group 15/16 free radicals. Up until the latter end of the last century, these radicals posed fundamental questions regarding the structure and bonding in main group chemistry. Now, in many cases, their thermodynamic and kinetic stability allows them to be used in the construction of molecular magnets and conductors. In this overview we will focus on the synthesis and characterisation of these radicals with a particular emphasis on their physical properties. [Pg.734]

Finally, I do not discuss questions of the measurement, estimation, evaluation, and compilation of the thermodynamic data upon which reaction modeling depends. Nordstrom and Munoz (1994, Chapters 13 and 14) provide a summary and overview of this topic, truly a specialty in its own right. Haas and Fisher (1976), Helgeson et al. (1978), and Johnson et al. (1991) treat aspects of the subject in detail. [Pg.5]

Figure 8.15 Calculated composition versus oxygen stoichiometry curves for Lai- SrjCoCb-s. [The two experimental points are taken from data in A. N. Petrov, V. A. Cherepanov, and A. Y. Zuev, Thermodynamics, Defect Structure and Charge Transfer in Doped Lanthanum Cobaltites An Overview, J. Solid State Electrochem., 10, 517-537 (2006).]... Figure 8.15 Calculated composition versus oxygen stoichiometry curves for Lai- SrjCoCb-s. [The two experimental points are taken from data in A. N. Petrov, V. A. Cherepanov, and A. Y. Zuev, Thermodynamics, Defect Structure and Charge Transfer in Doped Lanthanum Cobaltites An Overview, J. Solid State Electrochem., 10, 517-537 (2006).]...
This chapter introduces additional central concepts of thermodynamics and gives an overview of the formal methods that are used to describe single-component systems. The thermodynamic relationships between different phases of a single-component system are described and the basics of phase transitions and phase diagrams are discussed. Formal mathematical descriptions of the properties of ideal and real gases are given in the second part of the chapter, while the last part is devoted to the thermodynamic description of condensed phases. [Pg.29]

Most energetic contributions are, as we have discussed, difficult to predict and large experimental efforts have for that reason been devoted to derive systematic trends in the energetics of classes of materials. In this chapter we will try to convey an overview of periodic trends in the thermodynamic properties of inorganic compounds and we will also present selected examples illustrating some of the more usual rationalization schemes. Finally, trends in enthalpy of mixing are treated. Also here we aim to look at trends and rationalization schemes. The chapter is by no means exhaustive - only selected classes of compounds and selected rationalization schemes are discussed. [Pg.199]

A large number of techniques have been used to investigate the thermodynamic properties of solids, and in this section an overview is given that covers all the major experimental methods. Most of these techniques have been treated in specialized reviews and references to these are given. This section will focus on the main principles of the different techniques, the main precautions to be taken and the main sources of possible systematic errors. The experimental methods are rather well developed and the main problem is to apply the different techniques to systems with various chemical and physical properties. For example, the thermal stability of the material to be studied may restrict the experimental approach to be used. [Pg.308]

Identification of hazardous chemicals through thermodynamic and kinetic analyses is discussed in Chapter 2. This hazard identification makes use of thermal analysis and reaction calorimetry. In Chapter 2, an overview of the theory of thermodynamics, which determines the reaction (decomposition)... [Pg.2]

In the last decade there were many papers published on the study of enzyme catalyzed reactions performed in so-called chromatographic reactors. The attractive feature of such systems is that during the course of the reaction the compounds are already separated, which can drive the reaction beyond the thermodynamic equilibrium as well as remove putative inhibitors. In this chapter, an overview of such chromatographic bioreactor systems is given. Besides, some immobilization techniques to improve enzyme activity are discussed together with modern chromatographic supports with improved hydrodynamic characteristics to be used in this context. [Pg.164]

TNG.67.1. Prigogine, Nonequilibrium Thermodynamics and Chemical Evolution An Overview,... [Pg.49]

Head to www. brightredbooks.net and watch the video clip giving an overview of the second law of thermodynamics. [Pg.42]

No single treatise can provide a sufficiently thorough account of the properties of water Yet, the kinetics and thermodynamics of every biochemical process are linked to the molecular interactions of water with macromolecules, membranes, metabohtes, anions, cations, protons and even electrons. For this reason, this handbook provides a brief overview of the structure and general properties of this most fascinating of all solvents. Where deemed appropriate, references are provided for further reading by those motivated to examine these topics at greater depth. [Pg.704]

It is therefore the right time to give a first comprehensive overview of fullerene chemistry, which is the aim of this book. This summary addresses chemists, material scientists and a broad readership in industry and the scientific community. The number of publications in this field meanwhile gains such dimensions that for nonspecialists it is very difficult to obtain a facile access to the topics of interest. In this book, which contains the complete important literature, the reader will find all aspects of fullerene chemistry as well as the properties of fullerene derivatives. After a short description of the discovery of the fullerenes all methods of the production and isolation of the parent fullerenes and endohedrals are discussed in detail (Chapter 1). In this first chapter the mechanism of the fullerene formation, the physical properties, for example the molecular structure, the thermodynamic, electronic and spectroscopic properties as well as solubilities are also summarized. This knowledge is necessary to understand the chemical behavior of the fullerenes. [Pg.435]

This chapter provides a general discussion of kinetics versus thermodynamics, chemical kinetics versus geochemical kinetics, and an overview of the basics of various kinetic processes and applications. Subsequent chapters will provide in-depth development of theories and applications of specific subjects. The purpose of the overview in this chapter is to provide the big picture of the whole field before in-depth exploration of the topics. Furthermore, this chapter is a standalone chapter that may be used in a general geochemistry course to introduce kinetics to students. [Pg.3]

Overview of Semi-Empirical and Ab Initio Molecular Orbital Methods. 2.2 Applications of Molecular Mechanics. 3 Experimental Structural Methods. 3.1 X-Ray Diffraction. 3.2 NMR Spectroscopy and. 3.3 Mass Spectrometry. 3.4 UV/Fluorescence. 3.5 IR Spectroscopy. 3.6 Redox Potentials. 4 Thermodynamic Aspects. 4.1 Melting Points. 5 Reactivity of Fully Conjugated Rings 6 Reactivity of Nonconjugated Rings... [Pg.513]


See other pages where Thermodynamics overview is mentioned: [Pg.100]    [Pg.141]    [Pg.314]    [Pg.100]    [Pg.141]    [Pg.314]    [Pg.176]    [Pg.162]    [Pg.181]    [Pg.77]    [Pg.483]    [Pg.82]    [Pg.379]    [Pg.534]    [Pg.18]    [Pg.77]    [Pg.42]    [Pg.24]    [Pg.211]    [Pg.2]    [Pg.67]    [Pg.121]    [Pg.5]    [Pg.363]    [Pg.327]    [Pg.261]    [Pg.53]    [Pg.361]    [Pg.93]    [Pg.7]    [Pg.283]    [Pg.408]    [Pg.39]    [Pg.9]    [Pg.344]   
See also in sourсe #XX -- [ Pg.251 ]

See also in sourсe #XX -- [ Pg.3 , Pg.4 , Pg.21 , Pg.31 , Pg.75 , Pg.601 , Pg.627 , Pg.631 ]




SEARCH



Statistical thermodynamics overview

© 2024 chempedia.info