Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics fugacity

Standard Quantities in Chemical Thermodynamics. Fugacities, Activities, and Equilibrium Constants for Pure and Mixed Phases. IUPAC Recommendations 1994 Pure Appl. Chem. 1994, 66, 533-552. [Pg.78]

M. B. Ewing, T. H. LiUey, G. M. Olofsson, M. T. Ratzsch, and G. Somsen, Standard Quantities in Chemical Thermodynamics. Fugacities, Activities, and Equilibrium Constants for Pure and Mixed Phases (lUPAC Recommendations 1994). Pure Appl. Chem., 66, 533-552 (1994). [Pg.513]

IUP1 lUPAC A report of lUPAC Commission 1.2 on Thermodynamics Standard quantities in chemical thermodynamics. Fugacities, activities, and equilibrium constants for pure and mixed phase (Ewing, M.B. Lilley, T.H. Olofsson, G.M. Raetzsch, M.T. Somsen, G). J. Chem. Thermodyn. 27 (1977) 1-16. [Pg.24]

In Chapter 2 we discuss briefly the thermodynamic functions whereby the abstract fugacities are related to the measurable, real quantities temperature, pressure, and composition. This formulation is then given more completely in Chapters 3 and 4, which present detailed material on vapor-phase and liquid-phase fugacities, respectively. [Pg.5]

The calculation of vapor and liquid fugacities in multi-component systems has been implemented by a set of computer programs in the form of FORTRAN IV subroutines. These are applicable to systems of up to twenty components, and operate on a thermodynamic data base including parameters for 92 compounds. The set includes subroutines for evaluation of vapor-phase fugacity... [Pg.5]

It is strictly for convenience that certain conventions have been adopted in the choice of a standard-state fugacity. These conventions, in turn, result from two important considerations (a) the necessity for an unambiguous thermodynamic treatment of noncondensable components in liquid solutions, and (b) the relation between activity coefficients given by the Gibbs-Duhem equation. The first of these considerations leads to a normalization for activity coefficients for nonoondensable components which is different from that used for condensable components, and the second leads to the definition and use of adjusted or pressure-independent activity coefficients. These considerations and their consequences are discussed in the following paragraphs. [Pg.17]

The standard-state fugacity of any component must be evaluated at the same temperature as that of the solution, regardless of whether the symmetric or unsymmetric convention is used for activity-coefficient normalization. But what about the pressure At low pressures, the effect of pressure on the thermodynamic properties of condensed phases is negligible and under such con-... [Pg.19]

The fugacity coefficient can be found from the equation of state using the thermodynamic relation (Beattie, 1949) ... [Pg.26]

The values of the thermodynamic properties of the pure substances given in these tables are, for the substances in their standard states, defined as follows For a pure solid or liquid, the standard state is the substance in the condensed phase under a pressure of 1 atm (101 325 Pa). For a gas, the standard state is the hypothetical ideal gas at unit fugacity, in which state the enthalpy is that of the real gas at the same temperature and at zero pressure. [Pg.532]

One of the simplest cases of phase behavior modeling is that of soHd—fluid equilibria for crystalline soHds, in which the solubility of the fluid in the sohd phase is negligible. Thermodynamic models are based on the principle that the fugacities (escaping tendencies) of component are equal for all phases at equilibrium under constant temperature and pressure (51). The soHd-phase fugacity,, can be represented by the following expression at temperature T ... [Pg.224]

Perhaps the most significant of the partial molar properties, because of its appHcation to equiHbrium thermodynamics, is the chemical potential, ]1. This fundamental property, and related properties such as fugacity and activity, are essential to mathematical solutions of phase equihbrium problems. The natural logarithm of the Hquid-phase activity coefficient, Iny, is also defined as a partial molar quantity. For Hquid mixtures, the activity coefficient, y, describes nonideal Hquid-phase behavior. [Pg.235]

Thermodynamics of Liquid—Liquid Equilibrium. Phase splitting of a Hquid mixture into two Hquid phases (I and II) occurs when a single hquid phase is thermodynamically unstable. The equiUbrium condition of equal fugacities (and chemical potentials) for each component in the two phases allows the fugacitiesy andy in phases I and II to be equated and expressed as ... [Pg.238]

Generalized charts are appHcable to a wide range of industrially important chemicals. Properties for which charts are available include all thermodynamic properties, eg, enthalpy, entropy, Gibbs energy and PVT data, compressibiUty factors, Hquid densities, fugacity coefficients, surface tensions, diffusivities, transport properties, and rate constants for chemical reactions. Charts and tables of compressibiHty factors vs reduced pressure and reduced temperature have been produced. Data is available in both tabular and graphical form (61—72). [Pg.239]

The residual Gibbs energy and the fugacity coefficient are useful where experimental PVT data can be adequately correlated by equations of state. Indeed, if convenient treatment or all fluids by means of equations of state were possible, the thermodynamic-property relations already presented would suffice. However, liquid solutions are often more easily dealt with through properties that measure their deviations from ideal solution behavior, not from ideal gas behavior. Thus, the mathematical formahsm of excess properties is analogous to that of the residual properties. [Pg.520]

Finally, it is necessary to observe that the values of activities and fugacities calculated are thermodynamic quantities that cannot always be realised in practice, e.g. very high activities of metal ions cannot be attained because of solubility consideration and very low activities have no physical significance. [Pg.64]

For liquid mixtures at low pressures, it is not important to specify with care the pressure of the standard state because at low pressures the thermodynamic properties of liquids, pure or mixed, are not sensitive to the pressure. However, at high pressures, liquid-phase properties are strong functions of pressure, and we cannot be careless about the pressure dependence of either the activity coefficient or the standard-state fugacity. [Pg.155]

At constant temperature, the activity coefficient depends on both pressure and composition. One of the important goals of thermodynamic analysis is to consider separately the effect of each independent variable on the liquid-phase fugacity it is therefore desirable to define and use constant-pressure activity coefficients which at constant temperature are independent of pressure and depend only on composition. The definition of such activity coefficients follows directly from either of the exact thermodynamic relations... [Pg.158]

In Section I, we indicated that significant progress in understanding high-pressure thermodynamics of mixtures requires a quantitative description of the variation of fugacity with pressure as given by Eq. (3). To obtain the effect of pressure on activity coefficient we substitute as follows ... [Pg.160]

Thermodynamic consistency tests for binary vapor-liquid equilibria at low pressures have been described by many authors a good discussion is given in the monograph by Van Ness (VI). Extension of these methods to isothermal high-pressure equilibria presents two difficulties first, it is necessary to have experimental data for the density of the liquid mixture along the saturation line, and second, since the ideal gas law is not valid, it is necessary to calculate vapor-phase fugacity coefficients either from volumetric data for... [Pg.179]

To illustrate this thermodynamic consistency test, Figs. 15, 16, and 17 show plots of the appropriate functions needed to calculate Areas I, II, and III, respectively, for the nitrogen-carbon dioxide system at 0°C the data are taken from Muirbrook (M5). Fugacity coffiecients were calculated with the modified Redlich-Kwong equation (R4). [Pg.181]

Fugacity, like other thermodynamics properties, is a defined quantity that does not need to have physical significance, but it is nice that it does relate to physical quantities. Under some conditions, it becomes (within experimental error) the equilibrium gas pressure (vapor pressure) above a condensed phase. It is this property that makes fugacity especially useful. We will now define fugacity, see how to calculate it, and see how it is related to vapor pressure. We will then define a related quantity known as the activity and describe the properties of fugacity and activity, especially in solution. [Pg.247]

For more comprehensive calculations of the fugacity coefficients in mixtures, see J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo. Modular Thermodynamics of Fluid Phase Equilibria, Prentice Hall. Englewood Cliffs. N.J., 19S6. Chapter 5. [Pg.323]

We now have the foundation for applying thermodynamics to chemical processes. We have defined the potential that moves mass in a chemical process and have developed the criteria for spontaneity and for equilibrium in terms of this chemical potential. We have defined fugacity and activity in terms of the chemical potential and have derived the equations for determining the effect of pressure and temperature on the fugacity and activity. Finally, we have introduced the concept of a standard state, have described the usual choices of standard states for pure substances (solids, liquids, or gases) and for components in solution, and have seen how these choices of standard states reduce the activity to pressure in gaseous systems in the limits of low pressure, to concentration (mole fraction or molality) in solutions in the limit of low concentration of solute, and to a value near unity for pure solids or pure liquids at pressures near ambient. [Pg.383]

By now we should be convinced that thermodynamics is a science of immense power. But it also has serious limitations. Our fifty million equations predict what — but they tell us nothing about why or how. For example, we can predict for water, the change in melting temperature with pressure, and the change of vapor fugacity with temperature or determine the point of equilibrium in a chemical reaction but we cannot use thermodynamic arguments to understand why we end up at a particular equilibrium condition. [Pg.497]


See other pages where Thermodynamics fugacity is mentioned: [Pg.914]    [Pg.211]    [Pg.58]    [Pg.75]    [Pg.914]    [Pg.211]    [Pg.58]    [Pg.75]    [Pg.6]    [Pg.14]    [Pg.31]    [Pg.111]    [Pg.63]    [Pg.1255]    [Pg.469]    [Pg.61]    [Pg.140]    [Pg.143]    [Pg.144]    [Pg.155]    [Pg.158]    [Pg.172]    [Pg.180]    [Pg.184]    [Pg.410]    [Pg.305]    [Pg.662]    [Pg.663]    [Pg.683]    [Pg.384]    [Pg.235]   
See also in sourсe #XX -- [ Pg.122 , Pg.123 , Pg.124 , Pg.125 ]




SEARCH



Fugacity

Fugacity thermodynamic definition

Thermodynamic properties fugacity

Thermodynamic properties fugacity coefficients

Thermodynamics fugacity coefficient

© 2024 chempedia.info