Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fuel cell thermodynamics

Therefore, the thermodynamic fuel cell OCV can be expressed as follows ... [Pg.134]

Let us consider the Nernst equation (Equation 4.49) for real thermodynamic fuel cell voltage given by Equation 4.49. [Pg.270]

The industrial economy depends heavily on electrochemical processes. Electrochemical systems have inherent advantages such as ambient temperature operation, easily controlled reaction rates, and minimal environmental impact (qv). Electrosynthesis is used in a number of commercial processes. Batteries and fuel cells, used for the interconversion and storage of energy, are not limited by the Carnot efficiency of thermal devices. Corrosion, another electrochemical process, is estimated to cost hundreds of millions of dollars aimuaUy in the United States alone (see Corrosion and CORROSION control). Electrochemical systems can be described using the fundamental principles of thermodynamics, kinetics, and transport phenomena. [Pg.62]

Cogeneration encompasses several distinct thermodynamic processes of simultaneous heat and power production. One utilizes air as a medium, another steam, a third employs heat rejected from a separate combustion process, such as an internal-combustion engine, and a fourth utilizes a thermochemical process such as found in a fuel cell. Although each process is distinct, they are often combined together to inaxiniize the energy production in a single thermodynamic system. [Pg.266]

Fuel cells such as the one shown on Fig. 3.4a convert H2 to H20 and produce electrical power with no intermediate combustion cycle. Thus their thermodynamic efficiency compares favorably with thermal power generation which is limited by Carnot-type constraints. One important advantage of solid electrolyte fuel cells is that, due to their high operating temperature (typically 700° to 1100°C), they offer the possibility of "internal reforming" which permits the use of fuels such as methane without a separate external reformer.33 36... [Pg.98]

Why Do We Need to Know This Material The topics described in this chapter may one day unlock a virtually inexhaustible supply of clean energy supplied daily by the Sun. The key is electrochemistry, the study of the interaction of electricity and chemical reactions. The transfer of electrons from one species to another is one of the fundamental processes underlying life, photosynthesis, fuel cells, and the refining of metals. An understanding of how electrons are transferred helps us to design ways to use chemical reactions to generate electricity and to use electricity to bring about chemical reactions. Electrochemical measurements also allow us to determine the values of thermodynamic quantities. [Pg.603]

Euel cells convert chemical energy directly into electricity, an inherently efficient process. Hence the thermodynamically attainable efficiencies are around 100%. The efficiency of a fuel cell is given by... [Pg.345]

In practice the situation is less favorable due to losses associated with overpotentials in the cell and the resistance of the membrane. Overpotential is an electrochemical term that, basically, can be seen as the usual potential energy barriers for the various steps of the reactions. Therefore, the practical efficiency of a fuel cell is around 40-60 %. For comparison, the Carnot efficiency of a modern turbine used to generate electricity is of order of 50 %. It is important to realize, though, that the efficiency of Carnot engines is in practice limited by thermodynamics, while that of fuel cells is largely set by material properties, which may be improved. [Pg.346]

At present, intercalation compounds are used widely in various electrochemical devices (batteries, fuel cells, electrochromic devices, etc.). At the same time, many fundamental problems in this field do not yet have an explanation (e.g., the influence of ion solvation, the influence of defects in the host structure and/or in the host stoichiometry on the kinetic and thermodynamic properties of intercalation compounds). Optimization of the host stoichiometry of high-voltage intercalation compounds into oxide host materials is of prime importance for their practical application. Intercalation processes into organic polymer host materials are discussed in Chapter 26. [Pg.448]

Ab Initio Atomistic Thermodynamics for Fuel Cell Catalysis... [Pg.129]

AB INITIO ATOMISTIC THERMODYNAMICS FOR FUEL CELL CATALYSIS... [Pg.130]

Wang Y, Li L, Hu L, Zhuang L, Lu J, Xu B. 2003. A feasibility analysis for alkaline membrane direct methanol fuel cell Thermodynamic disadvantages versus kinetic advantages. Electrochem Commun 5 662. [Pg.372]

In redox mediation, to have an effective electron exchange, the thermodynamic redox potentials of the enzyme and the mediator have to be accurately matched. For biocatalytic electrodes, efficient mediators must have redox potentials downhill from the redox potential of the enzyme a 50 mV difference is proposed to be optimal [1, 18]. The tuning of these potentials is a compromise between the need to have a high cell voltage and a high catalytic current. Furthermore, an obvious requirement is that the mediator must be stable in the reduced and oxidized states. Finally, for operation of a membraneless miniaturized biocatalytic fuel cell, the mediators for both the anode and the cathode must be immobilized to prevent power dissipation by solution redox reactions between them. [Pg.412]

Since the first report on the ferrocene mediated oxidation of glucose by GOx [69], extensive solution-phase studies have been undertaken in an attempt to elucidate the factors controlling the mediator-enzyme interaction. Although the use of solution-phase mediators is not compatible with a membraneless biocatalytic fuel cell, such studies can help elucidate the relationship between enzyme structure, mediator size, structure and mobility, and mediation thermodynamics and kinetics. For example, comprehensive studies on ferrocene and its derivatives [70] and polypy-ridyl complexes of ruthenium and osmium [71, 72] as mediators of GOx have been undertaken. Ferrocenes have come to the fore as mediators to GOx, surpassing many others, because of factors such as their mediation efficiency, stability in the reduced form, pH independent redox potentials, ease of synthesis, and substitutional versatility. Ferrocenes are also of sufficiently small size to diffuse easily to the active site of GOx. However, solution phase mediation can only be used if the future biocatalytic fuel cell... [Pg.420]


See other pages where Fuel cell thermodynamics is mentioned: [Pg.941]    [Pg.4]    [Pg.941]    [Pg.4]    [Pg.2411]    [Pg.1546]    [Pg.938]    [Pg.113]    [Pg.645]    [Pg.653]    [Pg.817]    [Pg.364]    [Pg.55]    [Pg.74]    [Pg.361]    [Pg.108]    [Pg.511]    [Pg.311]    [Pg.27]    [Pg.138]    [Pg.265]    [Pg.409]    [Pg.414]    [Pg.424]   
See also in sourсe #XX -- [ Pg.338 ]

See also in sourсe #XX -- [ Pg.393 ]




SEARCH



Cells thermodynamics

Fuel cell thermodynamic

Fuel thermodynamics

© 2024 chempedia.info