Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamic extraction

For precise determinations, activities should be used instead of concentrations, in such cases thermodynamic extraction constants are obtained. However, for practical purposes activities can normally be ignored. [Pg.212]

The stoichiometric extraction constant Eqx (6) can be deduced from (4), and the stoichiometric extraction constant Eqy (7) can be analogously deduced from (5). However, for more accurate measurements, the thermodynamic extraction constants should be determined, using activities instead of concentrations. [Pg.151]

King, 1971 Naphtali and Sandholm, 1971 Newman, 1963 and Tomich, 1970). Moreover the choice of appropriate computation procedures for distillation, absorption, and extraction is highly dependent on the system being separated, the conditions of separation, and the specifications to be satisfied (Friday and Smith, 1964 Seppala and Luus, 1972). The thermodynamic methods presented in Chapters 3, 4, and 5, particularly when combined to... [Pg.110]

The scientific basis of extractive metallurgy is inorganic physical chemistry, mainly chemical thermodynamics and kinetics (see Thermodynamic properties). Metallurgical engineering reties on basic chemical engineering science, material and energy balances, and heat and mass transport. Metallurgical systems, however, are often complex. Scale-up from the bench to the commercial plant is more difficult than for other chemical processes. [Pg.162]

Ma.nufa.cture. Nickel carbonyl can be prepared by the direct combination of carbon monoxide and metallic nickel (77). The presence of sulfur, the surface area, and the surface activity of the nickel affect the formation of nickel carbonyl (78). The thermodynamics of formation and reaction are documented (79). Two commercial processes are used for large-scale production (80). An atmospheric method, whereby carbon monoxide is passed over nickel sulfide and freshly reduced nickel metal, is used in the United Kingdom to produce pure nickel carbonyl (81). The second method, used in Canada, involves high pressure CO in the formation of iron and nickel carbonyls the two are separated by distillation (81). Very high pressure CO is required for the formation of cobalt carbonyl and a method has been described where the mixed carbonyls are scmbbed with ammonia or an amine and the cobalt is extracted as the ammine carbonyl (82). A discontinued commercial process in the United States involved the reaction of carbon monoxide with nickel sulfate solution. [Pg.12]

The separation of components by liquid-liquid extraction depends primarily on the thermodynamic equilibrium partition of those components between the two liquid phases. Knowledge of these partition relationships is essential for selecting the ratio or extraction solvent to feed that enters an extraction process and for evaluating the mass-transfer rates or theoretical stage efficiencies achieved in process equipment. Since two liquid phases that are immiscible are used, the thermodynamic equilibrium involves considerable evaluation of nonideal solutions. In the simplest case a feed solvent F contains a solute that is to be transferred into an extraction solvent S. [Pg.1450]

To extract a desired component A from a homogeneous liquid solution, one can introduce another liquid phase which is insoluble with the one containing A. In theory, component A is present in low concentrations, and hence, we have a system consisting of two mutually insoluble carrier solutions between which the solute A is distributed. The solution rich in A is referred to as the extract phase, E (usually the solvent layer) the treated solution, lean in A, is called the raffinate, R. In practice, there will be some mutual solubility between the two solvents. Following the definitions provided by Henley and Staffin (1963) (see reference Section C), designating two solvents as B and S, the thermodynamic variables for the system are T, P, x g, x r, Xrr (where P is system pressure, T is temperature, and the a s denote mole fractions).. The concentration of solvent S is not considered to be a variable at any given temperature, T, and pressure, P. As such, we note the following ... [Pg.320]

Alpha-scission is not favored thermodynamically but does occur. Alpha-scission produces a methyl radical, which can extract a hydrogen atom from a neutral hydrocarbon molecule. The hydrogen extraction produces methane and a secondary or tertiary free radical (Equation 4-3). [Pg.127]

The various equilibria involved in the solvent-extraction process are expressed in terms of the following thermodynamic constants ... [Pg.165]

Diphenylcarbazide as adsorption indicator, 358 as colorimetric reagent, 687 Diphenylthiocarbazone see Dithizone Direct reading emission spectrometer 775 Dispensers (liquid) 84 Displacement titrations 278 borate ion with a strong acid, 278 carbonate ion with a strong acid, 278 choice of indicators for, 279, 280 Dissociation (ionisation) constant 23, 31 calculations involving, 34 D. of for a complex ion, (v) 602 for an indicator, (s) 718 of polyprotic acids, 33 values for acids and bases in water, (T) 832 true or thermodynamic, 23 Distribution coefficient 162, 195 and per cent extraction, 165 Distribution ratio 162 Dithiol 693, 695, 697 Dithizone 171, 178... [Pg.861]

The thermodynamic aspect of osmotic pressure is to be sought in the expenditure of work required to separate solvent from solute. The separation may be carried out in other ways than by osmotic processes thus, if we have a solution of ether in benzene, we can separate the ether through a membrane permeable to it, or we may separate it by fractional distillation, or by freezing out benzene, or lastly by extracting the mixture with water. These different processes will involve the expenditure of work in different ways, but, provided the initial and final states are the same in each case, and all the processes are carried out isothermally and reversibly, the quantities of work are equal. This gives a number of relations between the different properties, such as vapour pressure and freezing-point, to which we now turn our attention. [Pg.288]

The physical nature of the sulfate complexes formed by plutonium(III) and plutonium(IV) in 1 M acid 2 M ionic strength perchlorate media has been inferred from thermodynamic parameters for complexation reactions and acid dependence of stability constants. The stability constants of 1 1 and 1 2 complexes were determined by solvent extraction and ion-exchange techniques, and the thermodynamic parameters calculated from the temperature dependence of the stability constants. The data are consistent with the formation of complexes of the form PuSOi,(n-2)+ for the 1 1 complexes of both plutonium(III) and plutonium(IV). The second HSO4 ligand appears to be added without deprotonation in both systems to form complexes of the form PuSOifHSOit(n"3) +. ... [Pg.251]

In an attempt to verify (or refute) this assumption, we have determined the thermodynamic parameters (AH, AS) for the complexes formed between Pu(III), Pu(IV), and HSOi in 1 M acid media utilizing cation-exchange and solvent extraction procedures. [Pg.252]

TABLE III. Equations and Thermodynamic Parameters for the Extraction of Am(III) from Nitrate Media by Carbamoylmethylphosphoryl Derivatives... [Pg.436]

In this process, the two streams flow countercurrently through the column and undergo a continuous change in composition. At any location are in dynamic rather than thermodynamic equilibium. Such processes are frequently carried out in packed columns, in which the liquid (or one of the two liquids in the case of a liquid-liquid extraction process) wets die surface of the packing, thus increasing the interfacial area available for mass transfer and, in addition, promoting high film mass transfer coefficients within each phase. [Pg.622]

The reduction is thermodynamically favored, because the standard potential of the couple Cu2+/Cu is positive (E° = +0.34 V). Metals with negative standard potentials, such as zinc (E° = —0.76 V) and nickel (E° = —0.23 V), cannot be extracted hydrometallurgically. [Pg.786]


See other pages where Thermodynamic extraction is mentioned: [Pg.85]    [Pg.85]    [Pg.176]    [Pg.357]    [Pg.168]    [Pg.364]    [Pg.88]    [Pg.299]    [Pg.7]    [Pg.446]    [Pg.446]    [Pg.448]    [Pg.366]    [Pg.317]    [Pg.325]    [Pg.261]    [Pg.1287]    [Pg.276]    [Pg.398]    [Pg.483]    [Pg.122]    [Pg.128]    [Pg.607]    [Pg.1032]    [Pg.890]    [Pg.1118]    [Pg.239]    [Pg.162]    [Pg.195]    [Pg.94]    [Pg.60]    [Pg.83]    [Pg.242]    [Pg.401]    [Pg.432]   
See also in sourсe #XX -- [ Pg.715 ]




SEARCH



Extracting Kinetic and Thermodynamic Properties of Local Unfolding Dynamics

Extracting the thermodynamic quantities of solvation from experimental data

Extraction of thermodynamic

Extraction processes thermodynamic description

Extractive metallurgy thermodynamics

Potential energy surface extracting thermodynamic

Thermodynamics, extraction processes

© 2024 chempedia.info