Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal thermogravimetric analysis

The thermal stabilities of these composites were determined by thermal gravimetric analysis. Figures 10.9 and 10.10 and Table 10.2 present the TGA and derivative of thermal thermogravimetric analysis (DTG) of epoxy composites with various DPPES-GNO and GNO contents, respectively, that were heated at a rate of 10 °C/min under N2. Tds is the temperature at which the weight loss of the sample reaches 5%. Figure 10.9 and Table 10.2 indicate that the values of DPPES-GNO nanocompo-... [Pg.263]

The definition of polymer thermal stabiUty is not simple owing to the number of measurement techniques, desired properties, and factors that affect each (time, heating rate, atmosphere, etc). The easiest evaluation of thermal stabiUty is by the temperature at which a certain weight loss occurs as observed by thermogravimetric analysis (tga). Early work assigned a 7% loss as the point of stabiUty more recentiy a 10% value or the extrapolated break in the tga curve has been used. A more reaUstic view is to compare weight loss vs time at constant temperature, and better yet is to evaluate property retention time at temperature one set of criteria has been 177°C for 30,000 h, or 240°C for 1000 h, or 538°C for 1 h, or 816°C for 5 min (1). [Pg.530]

Thermal analysis using differential scanning calorimetry (dsc), thermogravimetric analysis (tga), and differential thermal analysis (dta) can provide useful information about organic burnout, dehydration, and decomposition. [Pg.310]

This phenomenon can be demonstrated by both measuring the changes of the thermal properties of the ECA homopolymer and in adhesion tests. The addition of only 1 wt.% of 9 to a sample of the ECA homopolymer significantly increases the onset of decomposition in the thermogravimetric analysis (TGA) of the polymer, as seen in Fig. 9 [29]. [Pg.860]

Thermogravimetric analysis has also been used in conjunction with other techniques, such as differential thermal analysis (DTA), gas chromatography, and mass spectrometry, for the study and characterisation of complex materials such as clays, soils and polymers.35... [Pg.433]

David, The Application of Differential Thermal And Thermogravimetric Analysis to Military High Explosives , NAVORD 5802, AD 232625 (i960) 108) P. Aubertein H. Pascal, Chemical Determination of Some Explosives and Explosive Mixtures , MP 40,113-25 (1958) CA 54, 25825 (1960) 109) E.M. Bens et al, Rapid... [Pg.597]

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are also very useful tools for the characterization of polymers. TGA and DSC provide die information about polymer stability upon heating and thermal behaviors of polymers. Most of the polymers syndiesized via transition metal coupling are conjugated polymers. They are relatively stable upon heating and have higher Tgs. [Pg.490]

In most of the studies discussed above, except for the meta-linked diamines, when the aromatic content (dianhydride and diamine chain extender), of the copolymers were increased above a certain level, the materials became insoluble and infusible 153, i79, lsi) solution to this problem with minimum sacrifice in the thermal properties of the products has been the synthesis of siloxane-amide-imides183). In this approach pyromellitic acid chloride has been utilized instead of PMDA or BTDA and the copolymers were synthesized in two steps. The first step, which involved the formation of (siloxane-amide-amic acid) intermediate was conducted at low temperatures (0-25 °C) in THF/DMAC solution. After purification of this intermediate thin films were cast on stainless steel or glass plates and imidization was obtained in high temperature ovens between 100 and 300 °C following a similar procedure that was discussed for siloxane-imide copolymers. Copolymers obtained showed good solubility in various polar solvents. DSC studies indicated the formation of two-phase morphologies. Thermogravimetric analysis showed that the thermal stability of these siloxane-amide-imide systems were comparable to those of siloxane-imide copolymers 183>. [Pg.35]

The thermal degradation of TsHs and other TsRs species (R = Me, /Bu, nCsHiy, Ph) in air and an inert atmosphere has been studied by thermogravimetric analysis and shows that for TsHs incomplete sublimation tends to occur, and, in air, oxidation competes with volatalization. ... [Pg.29]

Thermal stability is a crucial factor when polysaccharides are used as reinforcing agents because they suffer from inferior thermal properties compared to inorganic fillers. However, thermogravimetric analysis (TGA) of biocomposites suggested that the degradation temperatures of biocomposites are in close proximity with those of carbon black composites (Table-1). [Pg.122]

When solids react, we would like to know at what temperature the solid state reaction takes place. If the solid decomposes to a different composition, or phase, we would like to have this knowledge so that we can predict and use that knowledge In preparation of desired materials. Sometimes, intermediate compounds form before the final phase. In this chapter, we will detail some of the measurements used to characterize the solid state and methods used to foUow solid state reactions. This will consist of various types of thermal analysis (TA), including differentlEd thermal analysis (DTA), thermogravimetric analysis (TGA) and measurements of optical properties. [Pg.357]

Typical characterization of the thermal conversion process for a given molecular precursor involves the use of thermogravimetric analysis (TGA) to obtain ceramic yields, and solution NMR spectroscopy to identify soluble decomposition products. Analyses of the volatile species given off during solid phase decompositions have also been employed. The thermal conversions of complexes containing M - 0Si(0 Bu)3 and M - 02P(0 Bu)2 moieties invariably proceed via ehmination of isobutylene and the formation of M - O - Si - OH and M - O - P - OH linkages that immediately imdergo condensation processes (via ehmination of H2O), with subsequent formation of insoluble multi-component oxide materials. For example, thermolysis of Zr[OSi(O Bu)3]4 in toluene at 413 K results in ehmination of 12 equiv of isobutylene and formation of a transparent gel [67,68]. [Pg.90]

Thermal Properties. The glass transition temperature (Tg) and the decomposition temperature (Td) were measured with a DuPont 910 Differential Scanning Calorimeter (DSC) calibrated with indium. The standard heating rate for all polymers was 10 °C/min. Thermogravimetric analysis (TGA) was performed on a DuPont 951 Thermogravimetric Analyzer at a heating rate of 20 °C/min. [Pg.157]

Ando and co-workers have reported the synthesis of a silyl-carborane hybrid diethynylbenzene-silylene polymer (108) (Fig. 66) possessing high thermal stability.136 The polymer contained Si and —C=C— group in the main chain and m-carborane and vinyl groups in the side chain. The 5% weight-loss temperature of the cured polymer in air was over 1000°C as determined by thermogravimetric analysis. [Pg.67]

In a study on the thermal and UV ageing of two commercial polyfoxymethy-lene) (POM) samples, one of which was a copolymer (see related study discussed later under Section 4.3, thermogravimetric analysis (TGA)), used in car interior applications, involving both DSC and TGA, isothermal OIT measurements were made at several different temperatures [8]. One conclusion from this study was that "extrapolation of the OIT data from high temperatures (molten state) to ambient temperatures in the solid state does not reflect effective antioxidant performance at room temperature", and thus measurements close to the melting point are not appropriate for reliable lifetime estimations. [Pg.391]

Nitrogen adsorption was performed at -196 °C in a Micromeritics ASAP 2010 volumetric instrument. The samples were outgassed at 80 °C prior to the adsorption measurement until a 3.10 3 Torr static vacuum was reached. The surface area was calculated by the Brunauer-Emmett-Teller (BET) method. Micropore volume and external surface area were evaluated by the alpha-S method using a standard isotherm measured on Aerosil 200 fumed silica [8]. Powder X-ray diffraction (XRD) patterns of samples dried at 80 °C were collected at room temperature on a Broker AXS D-8 diffractometer with Cu Ka radiation. Thermogravimetric analysis was carried out in air flow with heating rate 10 °C min"1 up to 900 °C in a Netzsch TG 209 C thermal balance. SEM micrographs were recorded on a Hitachi S4500 microscope. [Pg.390]

Thermogravimetry (TG) is a measure of the thermally induced weight loss of a material as a function of the applied temperature [45]. Thermogravimetric analysis is restricted to studies that involve either a mass gain or loss, and it is most commonly used to study desolvation processes and compound decomposition. The major use of TG analysis is in the quantitative determination of the total volatile content of a solid. When a solid can decompose by means of several... [Pg.17]


See other pages where Thermal thermogravimetric analysis is mentioned: [Pg.299]    [Pg.299]    [Pg.286]    [Pg.278]    [Pg.299]    [Pg.299]    [Pg.286]    [Pg.278]    [Pg.328]    [Pg.445]    [Pg.60]    [Pg.225]    [Pg.496]    [Pg.120]    [Pg.604]    [Pg.944]    [Pg.242]    [Pg.444]    [Pg.34]    [Pg.35]    [Pg.894]    [Pg.358]    [Pg.411]    [Pg.300]    [Pg.430]    [Pg.24]    [Pg.235]    [Pg.114]    [Pg.128]    [Pg.4]    [Pg.298]    [Pg.266]   
See also in sourсe #XX -- [ Pg.209 , Pg.210 ]




SEARCH



Thermogravimetric analysis

© 2024 chempedia.info