Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal properties structure glass transition temperature

Diamantane-based polymers are synthesized to take advantage of their stiffness, chemical and thermal stability, high glass transition temperature, improved solubility in organic solvents, and retention of their physical properties at high temperatures. All these special properties result from their diamantane-based molecular structure [90]. Polyamides are high-temperature polymers with a broad range of applications in different scientific and industrial fields. However, their process is very difficult because of poor solubility and lack of adequate thermal stability retention [90]. Incorporation of 1,6- or... [Pg.228]

Both first- and second-order transitions are observed in polymers. Melting and allotropic transformations are accompanied by latent-heat effects and are known as first-order transitions. During second-order transitions, changes in properties occur without any latent-heat effects. Below the second-order-transition temperature (glass transition temperature) a rubberlike material acts like a true solid (see Chapter 1). Above this temperature the fixed molecular structure is broken down partially by a combination of thermal expansion and thermal agitation. The glass transition temperature of polystyrene is 100°C below 100°C polystyrene is hard and brittle, and above 100°C it is rubberhke and becomes easily deformed. [Pg.364]

The most common backbone structure found in commercial polymers is the saturated carbon-carbon structure. Polymers with saturated carbon-carbon backbones, such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyacrylates, are produced using chain-growth polymerizations. The saturated carbon-carbon backbone of polyethylene with no side groups is a relatively flexible polymer chain. The glass transition temperature is low at -20°C for high-density polyethylene. Side groups on the carbon-carbon backbone influence thermal transitions, solubility, and other polymer properties. [Pg.4]

Network properties and microscopic structures of various epoxy resins cross-linked by phenolic novolacs were investigated by Suzuki et al.97 Positron annihilation spectroscopy (PAS) was utilized to characterize intermolecular spacing of networks and the results were compared to bulk polymer properties. The lifetimes (t3) and intensities (/3) of the active species (positronium ions) correspond to volume and number of holes which constitute the free volume in the network. Networks cured with flexible epoxies had more holes throughout the temperature range, and the space increased with temperature increases. Glass transition temperatures and thermal expansion coefficients (a) were calculated from plots of t3 versus temperature. The Tgs and thermal expansion coefficients obtained from PAS were lower titan those obtained from thermomechanical analysis. These differences were attributed to micro-Brownian motions determined by PAS versus macroscopic polymer properties determined by thermomechanical analysis. [Pg.416]

The data indicate that the properties of the lower glass transition temperature metal ion modified polyimides are altered more than the properties of the higher glass transition temperature metal ion modified polyimides. Extraction removes both cobalt and chlorine from the films and slightly increases bulk thermal stability and both surface resistivity and bulk electrical resistivity. Details pertaining to the structure, analysis and properties of these novel gradient composites are discussed. [Pg.396]

The dynamic mechanical thermal analyzer (DMTA) is an important tool for studying the structure-property relationships in polymer nanocomposites. DMTA essentially probes the relaxations in polymers, thereby providing a method to understand the mechanical behavior and the molecular structure of these materials under various conditions of stress and temperature. The dynamics of polymer chain relaxation or molecular mobility of polymer main chains and side chains is one of the factors that determine the viscoelastic properties of polymeric macromolecules. The temperature dependence of molecular mobility is characterized by different transitions in which a certain mode of chain motion occurs. A reduction of the tan 8 peak height, a shift of the peak position to higher temperatures, an extra hump or peak in the tan 8 curve above the glass transition temperature (Tg), and a relatively high value of the storage modulus often are reported in support of the dispersion process of the layered silicate. [Pg.109]

Poly[2,2 -(m-phenylene-5,5 -benzimidazole)] (PBI) is a very high glass transition temperature (Tg 430°C), commercially available material. It possesses excellent mechanical properties, but is difficult to process into large parts and has high moisture regain and poor thermo-oxidative stability at temperatures above approximately 260 °C. Polyimides, especially the thermoplastic polyimides, offer attractive thermo-oxidative stability and processibility, but often lack the thermal and mechanical characteristics necessary to perform in applications such as the matrix for high use-temperature (over 300 °C) structural composites (for example, carbon fiber reinforced) for aerospace use. The attempt to mitigate... [Pg.300]

Relatively few processible polyimides, particularly at a reasonable cost and in reliable supply, are available commercially. Users of polyimides may have to produce intractable polyimides by themselves in situ according to methods discussed earlier, or synthesize polyimides of unique compositions in order to meet property requirements such as thermal and therm oxidative stabilities, mechanical and electrical properties, physical properties such as glass-transition temperature, crystalline melting temperature, density, solubility, optical properties, etc. It is, therefore, essential to thoroughly understand the structure—property relationships of polyimide systems, and excellent review articles are available (1—5,92). [Pg.405]

Thermal Properties. Thermal properties include heat-deflection temperature (HDT), specific heat, continuous use temperature, thermal conductivity, coefficient of thermal expansion, and flammability ratings. Heat-deflection temperature is a measure of the minimum temperature that results in a specified deformation of a plastic beam under loads of 1.82 or 0.46 N/mm2 (264 or 67 psi, respectively). For an unreinforced plastic, this is typically ca 20°C below the glass-transition temperature, T, at which the molecular mobility is altered. Sometimes confused with HDT is the UL Thermal Index, which Underwriters Laboratories established as a safe continuous operation temperature for apparatus made of plastics (37). Typically, UL temperature indexes are significantly lower than HDTs. Specific heat and thermal conductivity relate to insulating properties. The coefficient of thermal expansion is an important component of mold shrinkage and must be considered when designing composite structures. [Pg.264]

While physicochemical and spectroscopic techniques elucidate valuable physical and structural information, thermal analysis techniques offer an additional approach to characterize NOM with respect to thermal stability, thermal transitions, and even interactions with solvents. Information such as thermal degradation temperature (or peak temperature), glass transition temperature, heat capacity, thermal expansion coefficient, and enthalpy can be readily obtained from thermal analysis these properties, when correlated with structural information, may serve to provide additional insights into NOM s environmental reactivity. [Pg.785]

Interesting comparisons have been made 17 between dendritic and the hyperbranched structures the thermal properties (glass transition temperature and thermogravimetric analysis) were independent of architecture and their solubilities were comparable, but greater than that shown for linear counterparts. [Pg.167]


See other pages where Thermal properties structure glass transition temperature is mentioned: [Pg.28]    [Pg.248]    [Pg.828]    [Pg.287]    [Pg.122]    [Pg.241]    [Pg.167]    [Pg.53]    [Pg.338]    [Pg.414]    [Pg.102]    [Pg.889]    [Pg.310]    [Pg.459]    [Pg.458]    [Pg.201]    [Pg.154]    [Pg.34]    [Pg.160]    [Pg.304]    [Pg.44]    [Pg.176]    [Pg.71]    [Pg.267]    [Pg.1355]    [Pg.1567]    [Pg.620]    [Pg.19]    [Pg.818]    [Pg.48]    [Pg.156]    [Pg.225]    [Pg.61]    [Pg.296]    [Pg.312]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Glass structural properties

Glass thermal properties

Glass transition property

Properties transitive

Structural glass

Structural glass transition

Structural temperature

Temperature structure

Thermal glasses

Thermal properties glass transition temperature

Thermal structure

Thermal temperature

Thermal transition temperatures

Thermalization temperature

Thermalized transitions

Transition properties

Transition properties glass transitions

Transitivity properties

© 2024 chempedia.info