Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal thermal properties

The industrial value of furfuryl alcohol is a consequence of its low viscosity, high reactivity, and the outstanding chemical, mechanical, and thermal properties of its polymers, corrosion resistance, nonburning, low smoke emission, and exceUent char formation. The reactivity profile of furfuryl alcohol and resins is such that final curing can take place at ambient temperature with strong acids or at elevated temperature with latent acids. Major markets for furfuryl alcohol resins include the production of cores and molds for casting metals, corrosion-resistant fiber-reinforced plastics (FRPs), binders for refractories and corrosion-resistant cements and mortars. [Pg.80]

Thermal Properties. Many commercial glass-ceramics have capitalized on thek superior thermal properties, particularly low or zero thermal expansion coupled with high thermal stabiUty and thermal shock resistance properties that are not readily achievable in glasses or ceramics. Linear thermal expansion coefficients ranging from —60 to 200 x 10 j° C can be obtained. Near-zero expansion materials are used in apphcations such as telescope mirror blanks, cookware, and stove cooktops, while high expansion frits are used for sealing metals. [Pg.320]

In appUcations in which electrical conductivity is required, metals, copper, tungsten, molybdenum, and Kovar [12606-16-5] are the preferred chip-carrier materials. Metals have exceUent thermal conductivities. Tables 2 and 3 Ust the various materials used for substrates, along with their mechanical, electrical, and thermal properties. [Pg.526]

Thermal Properties. Refractories, like most other soHds, expand upon heating, but much less than most metals. The degree of expansion depends on the chemical composition. A diagram of the thermal expansion of the most common refractories is shown in Figure 1. [Pg.29]

A very high, price and performance family of polymers called liquid crystal polymers (LCPs) exhibit extremely high mechanical and thermal properties. As their ease of processing and price improve, they may find appHcation in thin-waH, high strength parts such as nails, bolts, and fasteners where metal parts cannot be used for reasons of conductivity, electromagnetic characteristics, or corrosion. [Pg.338]

Ductility Tests. The ductihty of plated metals differs considerably from the corresponding thermally cast metals. Additionally, ductihty which is an important property if parts are to be deformed after plating, varies with the chemical composition of the plating solution, as well as the operating conditions of a given plating process. Ductihty can also be important when plated parts are stressed in use. Some metal deposits have coefficients of... [Pg.151]

For turbulent flow of a fluid past a solid, it has long been known that, in the immediate neighborhood of the surface, there exists a relatively quiet zone of fluid, commonly called the Him. As one approaches the wall from the body of the flowing fluid, the flow tends to become less turbulent and develops into laminar flow immediately adjacent to the wall. The film consists of that portion of the flow which is essentially in laminar motion (the laminar sublayer) and through which heat is transferred by molecular conduction. The resistance of the laminar layer to heat flow will vaiy according to its thickness and can range from 95 percent of the total resistance for some fluids to about I percent for other fluids (liquid metals). The turbulent core and the buffer layer between the laminar sublayer and turbulent core each offer a resistance to beat transfer which is a function of the turbulence and the thermal properties of the flowing fluid. The relative temperature difference across each of the layers is dependent upon their resistance to heat flow. [Pg.558]

The other principal thermal properties of plastics which are relevant to design are thermal conductivity and coefficient of thermal expansion. Compared with most materials, plastics offer very low values of thermal conductivity, particularly if they are foamed. Fig. 1.10 shows comparisons between the thermal conductivity of a selection of metals, plastics and building materials. In contrast to their low conductivity, plastics have high coefficients of expansion when compared with metals. This is illustrated in Fig. 1.11 and Table 1.8 gives fuller information on the thermal properties of pl tics and metals. [Pg.32]

W.W. Wendlandt and J.P. Smith, Thermal Properties of Transition Metal Ammine Complexes, Elsevier, Amsterdam, 1967. [Pg.317]

Their special field of investigation dealt with the electrical and thermal properties of metals. More recently considerable attention has been paid to the question of the nature of the interatomic forces in metals, which are significant for properties such as density, compressibility, crystal energy, and hardness and it has been found possible to treat this problem in a reasonably satisfactory way for the case of the alkali metals, with a single valence electron per atom.8... [Pg.344]

The metal casting industry conventionally divides casting products into ferrous and nonferrous metals, in particular, iron-based, steel-based, aluminum-based, and copper-based castings. The other castings of low fractions include magnesium, lead, zinc, and their alloys. In the U.S., the foundry industry currently produces 11 million tons of metal product per year, with a shipment value of 19 billion. Of them, iron and steel accounted for 84% of metals cast.5 The remaining 15% of foundry operations are concerned with aluminum, copper, zinc, and lead production. Table 4.2 summarizes critical physical and thermal properties of aluminum, iron/steel, and cast iron. [Pg.160]

Summary of experimental data Film boiling correlations have been quite successfully developed with ordinary liquids. Since the thermal properties of metal vapors are not markedly different from those of ordinary liquids, it can be expected that the accepted correlations are applicable to liquid metals with a possible change of proportionality constants. In addition, film boiling data for liquid metals generally show considerably higher heat transfer coefficients than is predicted by the available theoretical correlations for hc. Radiant heat contribution obviously contributes to some of the difference (Fig. 2.40). There is a third mode of heat transfer that does not exist with ordinary liquids, namely, heat transport by the combined process of chemical dimerization and mass diffusion (Eq. 2-162). [Pg.145]

In contrast to the strong effect of gas properties, it has been found that the thermal properties of the solid particles have relatively small effect on the heat transfer coefficient in bubbling fluidized beds. This appears to be counter-intuitive since much of the thermal transport process at the submerged heat transfer surface is presumed to be associated with contact between solid particles and the heat transfer surface. Nevertheless, experimental measurements such as those of Ziegler et al. (1964) indicate that the heat transfer coefficient was essentially independent of particle thermal conductivity and varied only mildly with particle heat capacity. These investigators measured heat transfer coefficients in bubbling fluidized beds of different metallic particles which had essentially the same solid density but varied in thermal conductivity by a factor of nine and in heat capacity by a factor of two. [Pg.162]

A remaining crucial technological milestone to pass for an implanted device remains the stability of the biocatalytic fuel cell, which should be expressed in months or years rather than days or weeks. Recent reports on the use of BOD biocatalytic electrodes in serum have, for example, highlighted instabilities associated with the presence of 02, urate or metal ions [99, 100], and enzyme deactivation in its oxidized state [101]. Strategies to be considered include the use of new biocatalysts with improved thermal properties, or stability towards interferences and inhibitors, the use of nanostructured electrode surfaces and chemical coupling of films to such surfaces, to improve film stability, and the design of redox mediator libraries tailored towards both mediation and immobilization. [Pg.430]

Wendlandt, W. W. et al., Thermal Properties of Transition Metal Complexes, Barking, Elsevier, 1967... [Pg.57]


See other pages where Metal thermal properties is mentioned: [Pg.160]    [Pg.244]    [Pg.52]    [Pg.158]    [Pg.148]    [Pg.400]    [Pg.134]    [Pg.192]    [Pg.463]    [Pg.528]    [Pg.66]    [Pg.56]    [Pg.441]    [Pg.2]    [Pg.65]    [Pg.69]    [Pg.371]    [Pg.152]    [Pg.265]    [Pg.606]    [Pg.706]    [Pg.740]    [Pg.893]    [Pg.198]    [Pg.102]    [Pg.195]    [Pg.21]    [Pg.203]    [Pg.70]    [Pg.152]    [Pg.233]    [Pg.289]    [Pg.249]   
See also in sourсe #XX -- [ Pg.13 ]




SEARCH



Thermal and Physical Properties of Pure Metals

© 2024 chempedia.info