Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal processing high-temperature products

The diffusion coatings are products of thermally activated high temperature processes, that form on the metallic surface chemically bonded layer with determinate chemical composition, structure and properties. For decades a variety of diffusion coatings have been developed and used to improve the properties of metallic surface. There are several kinds of coating methods among which the most commonly used and with the most widely industrial application is thermochemical treatment. [Pg.297]

Analytical studies of the PPA reaction processes by real-time infrared spectroscopy [19A] demonstrate that cycUzation to the corresponding quinacridones is very rapid at the typical reaction temperatures and although not confirmed directly, probably proceeds by a two-stage sequential mechanism. Analogous to the thermal process high dilution conditions favor monomolecular reactions and subsequently the quaUty of the ultimate products. The by-products of bimolecular reactions occasionally have been detected in some quinacridone pigments... [Pg.301]

Thermal polymerization is not as effective as catalytic polymerization but has the advantage that it can be used to polymerize saturated materials that caimot be induced to react by catalysts. The process consists of the vapor-phase cracking of, for example, propane and butane, followed by prolonged periods at high temperature (510—595°C) for the reactions to proceed to near completion. Olefins can also be conveniendy polymerized by means of an acid catalyst. Thus, the treated olefin-rich feed stream is contacted with a catalyst, such as sulfuric acid, copper pyrophosphate, or phosphoric acid, at 150—220°C and 1035—8275 kPa (150—1200 psi), depending on feedstock and product requirement. [Pg.208]

Thermal Process. In the manufacture of phosphoric acid from elemental phosphoms, white (yellow) phosphoms is burned in excess air, the resulting phosphoms pentoxide is hydrated, heats of combustion and hydration are removed, and the phosphoric acid mist collected. Within limits, the concentration of the product acid is controlled by the quantity of water added and the cooling capabiUties. Various process schemes deal with the problems of high combustion-zone temperatures, the reactivity of hot phosphoms pentoxide, the corrosive nature of hot phosphoric acid, and the difficulty of collecting fine phosphoric acid mist. The principal process types (Fig. 3) include the wetted-waH, water-cooled, or air-cooled combustion chamber, depending on the method used to protect the combustion chamber wall. [Pg.326]

Commercial condensed phosphoric acids are mixtures of linear polyphosphoric acids made by the thermal process either direcdy or as a by-product of heat recovery. Wet-process acid may also be concentrated to - 70% P2O5 by evaporation. Liaear phosphoric acids are strongly hygroscopic and undergo viscosity changes and hydrolysis to less complex forms when exposed to moist air. Upon dissolution ia excess water, hydrolytic degradation to phosphoric acid occurs the hydrolysis rate is highly temperature-dependent. At 25°C, the half-life for the formation of phosphoric acid from the condensed forms is several days, whereas at 100°C the half-life is a matter of minutes. [Pg.330]

Some phosphides, such as titanium phosphide [12037-65-9] TiP, can be prepared bypassing phosphine over the metal or its haUde. Reaction of phosphine with heavy metal salt solutions often yields phosphines that may contain unsubstituted hydrogens. Phosphides may also be prepared by reducing phosphoms-containing salts with hydrogen, carbon, etc, at high temperatures, the main example of which is the by-product formation of ferrophosphoms in the electric furnace process for elemental phosphoms. Phosphoms-rich phosphides such as vanadium diphosphide [12037-77-3] may be converted to lower phosphides, eg, vanadium phosphide [12066-53-4] by thermal treatment. [Pg.377]

Oxide fibers are manufactured by thermal or chemical processes into a loose wool mat, which can then be fabricated into a flexible blanket combined with binders and formed into boards, felts, and rigid shapes or fabricated into ropes, textiles and papers. The excellent thermal properties of these products make them invaluable for high temperature industrial appHcations. [Pg.53]

Thermal Asphalt. Thermal asphalt products are in low supply because the thermal process has been virtually replaced by catalytic cracking processes. Thermal pitches, because of their high viscosity temperature susceptibiHty, are very hard at ordinary temperatures (Table 9), but become quite... [Pg.372]

Because of their unique blend of properties, composites reinforced with high performance carbon fibers find use in many structural applications. However, it is possible to produce carbon fibers with very different properties, depending on the precursor used and processing conditions employed. Commercially, continuous high performance carbon fibers currently are formed from two precursor fibers, polyacrylonitrile (PAN) and mesophase pitch. The PAN-based carbon fiber dominates the ultra-high strength, high temperature fiber market (and represents about 90% of the total carbon fiber production), while the mesophase pitch fibers can achieve stiffnesses and thermal conductivities unsurpassed by any other continuous fiber. This chapter compares the processes, structures, and properties of these two classes of fibers. [Pg.119]


See other pages where Thermal processing high-temperature products is mentioned: [Pg.444]    [Pg.355]    [Pg.231]    [Pg.239]    [Pg.255]    [Pg.281]    [Pg.196]    [Pg.1121]    [Pg.5440]    [Pg.446]    [Pg.118]    [Pg.93]    [Pg.263]    [Pg.161]    [Pg.274]    [Pg.449]    [Pg.122]    [Pg.423]    [Pg.52]    [Pg.126]    [Pg.235]    [Pg.238]    [Pg.249]    [Pg.270]    [Pg.295]    [Pg.316]    [Pg.42]    [Pg.88]    [Pg.365]    [Pg.368]    [Pg.497]    [Pg.530]    [Pg.530]    [Pg.544]    [Pg.509]    [Pg.529]    [Pg.44]    [Pg.188]    [Pg.2373]    [Pg.379]    [Pg.677]    [Pg.482]   
See also in sourсe #XX -- [ Pg.251 ]




SEARCH



High production

High temperature processes

High-processing temperatures

Process temperatures

Processing temperatures

Product thermal

Temperature production

Thermal processes

Thermal temperature

Thermalization temperature

© 2024 chempedia.info