Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal energy , effects

Although we have focused so far on the thermal energy effects resulting from chemical reactions, many physical processes, such as the melting of ice or the condensation of a vapor, also involve the absorption or release of heat. Enthalpy changes occur as well when a solute dissolves in a solvent or when a solution is diluted. Let us look at these two related physical processes, involving heat of solution and heat of dilution. [Pg.220]

If thermal energy effects are important and the reactor does not operate isothermally, then the information described below is required to analyze reactor performance. [Pg.135]

A to products by considering mass transfer across the external surface of the catalyst. In the presence of multiple chemical reactions, where each iRy depends only on Ca, stoichiometry is not required. Furthermore, the thermal energy balance is not required when = 0 for each chemical reaction. In the presence of multiple chemical reactions where thermal energy effects must be considered becanse each AH j is not insignificant, methodologies beyond those discussed in this chapter must be employed to generate temperature and molar density profiles within catalytic pellets (see Aris, 1975, Chap. 5). In the absence of any complications associated with 0, one manipulates the steady-state mass transfer equation for reactant A with pseudo-homogeneous one-dimensional diffusion and multiple chemical reactions under isothermal conditions (see equation 27-14) ... [Pg.751]

The SPATE technique is based on measurement of the thermoelastic effect. Within the elastic range, a body subjected to tensile or compressive stresses experiences a reversible conversion between mechanical and thermal energy. Provided adiabatic conditions are maintained, the relationship between the reversible temperature change and the corresponding change in the sum of the principal stresses is linear and indipendent of the load frequency. [Pg.409]

A molecular dynamics simulation samples the phase space of a molecule (defined by the position of the atoms and their velocities) by integrating Newton s equations of motion. Because MD accounts for thermal motion, the molecules simulated may possess enough thermal energy to overcome potential barriers, which makes the technique suitable in principle for conformational analysis of especially large molecules. In the case of small molecules, other techniques such as systematic, random. Genetic Algorithm-based, or Monte Carlo searches may be better suited for effectively sampling conformational space. [Pg.359]

When an atom or molecule receives sufficient thermal energy to escape from a Hquid surface, it carries with it the heat of vaporization at the temperature at which evaporation took place. Condensation (return to the Hquid state accompanied by the release of the latent heat of vaporization) occurs upon contact with any surface that is at a temperature below the evaporation temperature. Condensation occurs preferentially at all poiats that are at temperatures below that of the evaporator, and the temperatures of the condenser areas iacrease until they approach the evaporator temperature. There is a tendency for isothermal operation and a high effective thermal conductance. The steam-heating system for a building is an example of this widely employed process. [Pg.511]

The use and effective costs of various energy alternatives are shown in Table 2. Use or internal costs include production, transportation, and distribution. Effective costs take into account the use costs estimated external costs, which include costs associated with damage to the environment caused by utili2ation of various fossil fuels and fuel utili2ation efficiencies, ie, the efficiency of converting fuels into mechanical, electrical, or thermal energy. The effective costs are expressed as /GJ of fossil fuel equivalent (15). The overall equation for the effective cost is... [Pg.454]

Impacts and Explosives. The coUision of high velocity bullets or other projectiles with soHds causes rapid conversion of kinetic to thermal energy. Plasmas result iacidentaHy, whereas the primary effects of impact are shock and mechanical effects in the target. Impact-produced plasmas are hot enough to cause thermonuclear bum (180). [Pg.117]

The first solar-electric technology to arouse industry interest was solar-thermal energy (1,3,5,6,8). Under favorable circumstances, it can be cost-effective, as evidenced by the fact that solar-thermal gas-hybrid plants produce over 350 MW of commercial power in southern California. This power is used during peak demand to supplement that available from conventional generation. [Pg.105]

As the nanotube diameter increases, more wave vectors become allowed for the circumferential direction, the nanotubes become more two-dimensional and the semiconducting band gap disappears, as is illustrated in Fig. 19 which shows the semiconducting band gap to be proportional to the reciprocal diameter l/dt. At a nanotube diameter of dt 3 nm (Fig. 19), the bandgap becomes comparable to thermal energies at room temperature, showing that small diameter nanotubes are needed to observe these quantum effects. Calculation of the electronic structure for two concentric nanotubes shows that pairs of concentric metal-semiconductor or semiconductor-metal nanotubes are stable [178]. [Pg.71]

Theoretical studies indicate that for dt < 2 nm the effect of strain energy exceeds that of the room temperature thermal energy, so that it is only at small nanotube diameters that the strain energy associated with nanotube... [Pg.83]

In Gaussian plume computations the change in wind velocity with height is a function both of the terrain and of the time of day. We model the air flow as turbulent flow, with turbulence represented by eddy motion. The effect of eddy motion is important in diluting concentrations of pollutants. If a parcel of air is displaced from one level to another, it can carry momentum and thermal energy with it. It also carries whatever has been placed in it from pollution sources. Eddies exist in different sizes in the atmosphere, and these turbulent eddies are most effective in dispersing the plume. [Pg.282]

In order to predict the energy of a system at some higher temperature, a thermal energy correction must be added to the total energy, which includes the effects of molecular translation, rotation and vibration at the specified temperature and pressure. Note that the thermal energy includes the zero-point energy automatically do not add both of them to an energy value. [Pg.68]


See other pages where Thermal energy , effects is mentioned: [Pg.42]    [Pg.115]    [Pg.853]    [Pg.853]    [Pg.902]    [Pg.214]    [Pg.97]    [Pg.80]    [Pg.42]    [Pg.115]    [Pg.853]    [Pg.853]    [Pg.902]    [Pg.214]    [Pg.97]    [Pg.80]    [Pg.45]    [Pg.196]    [Pg.69]    [Pg.602]    [Pg.24]    [Pg.358]    [Pg.262]    [Pg.268]    [Pg.270]    [Pg.443]    [Pg.511]    [Pg.137]    [Pg.127]    [Pg.321]    [Pg.479]    [Pg.1106]    [Pg.2405]    [Pg.241]    [Pg.198]    [Pg.7]    [Pg.60]    [Pg.61]    [Pg.286]    [Pg.115]    [Pg.1309]    [Pg.142]    [Pg.1256]    [Pg.176]   
See also in sourсe #XX -- [ Pg.27 , Pg.30 , Pg.35 , Pg.40 , Pg.43 , Pg.52 , Pg.66 , Pg.81 , Pg.91 ]




SEARCH



Effects of Thermal, Photochemical and High-energy Radiation

Energy thermal

Thermal Effects and Energy Balances

Thermal effects

© 2024 chempedia.info