Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal analysis using mechanical property measurement

1 Thermal analysis using mechanical property measurement [Pg.120]

There are two main types of mechanical thermal analysis instruments, namely thermomechanical analysis and dynamic mechanical analysis, TMA and DMA respectively. The first is a simple technique that has been available for many years and simply records change of sample length as a function of changing temperature. Despite this simplicity it enables the measurement of phase transitions, glass transition temperature and coefficient of thermal expansion. It has the advantage of being simple to use and perhaps more importantly the interpretation of results is quite straightforward. [Pg.120]

The second method is DMA. What is DMA DMA is a technique for measuring the modulus and damping factor of a sample [1]. The modulus is a measure of how stiff or flimsy a sample is and the amount of damping a material can provide is related to the energy it can absorb see Glossary for definitions. DMA is commonly used on a variety of materials, for example thermoplastics, thermosets, composites and biomaterials. The samples may be presented in a variety of forms including bars, strips, discs, fibres and films. Even powders can be tested when suitable containment is arranged. [Pg.120]

How does it work DMA applies a force and measures the displacement response to this force. This results in a stiffness measurement that can be converted into a modulus value if the sample dimensions and deformation geometry are known [2]. When the temperature is changed these measured properties change quite markedly and this yields important information about the materials molecular structure (1 ]. [Pg.121]

The practical choice of sample geometry, techniques for specifying the glass transition temperature and dealing with errors from geometry and heating rate will all be presented. Where possible this will be shown on representative data from real samples. [Pg.121]


Polypropylene molecules repeatedly fold upon themselves to form lamellae, the sizes of which ate a function of the crystallisa tion conditions. Higher degrees of order are obtained upon formation of crystalline aggregates, or spheruHtes. The presence of a central crystallisation nucleus from which the lamellae radiate is clearly evident in these stmctures. Observations using cross-polarized light illustrates the characteristic Maltese cross model (Fig. 2b). The optical and mechanical properties ate a function of the size and number of spheruHtes and can be modified by nucleating agents. Crystallinity can also be inferred from thermal analysis (28) and density measurements (29). [Pg.408]

In the addition to homo-PVF2, a large number of copolymers have also been synthesized which allow to optimize the mechanical properties of fluoropolymers. Most common are copolymers with vinyl fluoride, trifluoroethylene, tetrafluoroethylene, hexafiuoropropy-lene, hexafluoroisobutylene, chlorotrifluoroethylene, and pentafiuoro-propene [521,535, 559-562]. Copolymerization with nonfluorinated monomers is possible [563] in principle but has not yet found commercial use. Fluorocarbon monomers that can help to retain or enhance the desirable thermal, chemical, and mechanical properties of the vinylidene structure are more interesting comonomers. Copolymerization with hexafluoropropylene, pentafluoropropylene, and chlorotrifluoroethylene results in elastomeric copolymers [564]. The polymerization conditions are similar to those of homopoly(vinylidene fluoride) [564]. The copolymers have been well characterized by x-ray analysis [535], DSC measurements [565], and NMR spectroscopy [565,566]. [Pg.215]

For the identification of space effects on polymers, numerous standard tests must be used, namely spectroscopy, thermal analysis, dielectric and conductivity measurements, mechanical and viscoelastic property determination, etc. In the late 1990s NASA decided to substitute polyurethane coatings (having carcinogenic) with another one. The 18 alternative candidates were subjected to 34 standard test procedures (Table 3.7). In the following report the number of candidates fell to eight, from which the best with the lowest cost-to-performance ratio will have to be selected. This procedure illustrates how involved the polymeric testing for space application is, even if the test procedures are quite standard. [Pg.108]

Thermal analysis iavolves techniques ia which a physical property of a material is measured agaiast temperature at the same time the material is exposed to a coatroUed temperature program. A wide range of thermal analysis techniques have been developed siace the commercial development of automated thermal equipment as Hsted ia Table 1. Of these the best known and most often used for polymers are thermogravimetry (tg), differential thermal analysis (dta), differential scanning calorimetry (dsc), and dynamic mechanical analysis (dma). [Pg.149]

Viscoelastic phenomena always involve the change of properties with time and, therefore, the measurements of viscoelastic properties of solid polymers may be called dynamic mechanical. Dynamic mechanical thermal analysis (DMTA) is a very useful tool for studying... [Pg.392]

This second group of tests is designed to measure the mechanical response of a substance to applied vibrational loads or strains. Both temperature and frequency can be varied, and thus contribute to the information that these tests can provide. There are a number of such tests, of which the major ones are probably the torsion pendulum and dynamic mechanical thermal analysis (DMTA). The underlying principles of these dynamic tests have been covered earlier. Such tests are used as relatively rapid methods of characterisation and evaluation of viscoelastic polymers, including the measurement of T, the study of the curing characteristics of thermosets, and the study of polymer blends and their compatibility. They can be used in essentially non-destructive modes and, unlike the majority of measurements made in non-dynamic tests, they yield data on continuous properties of polymeric materials, rather than discontinuous ones, as are any of the types of strength which are measured routinely. [Pg.116]

Chemical, Physical, and Mechanical Tests. Manufactured friction materials are characterized by various chemical, physical, and mechanical tests in addition to friction and wear testing. The chemical tests include thermogravimetric analysis (tga), differential thermal analysis (dta), pyrolysis gas chromatography (pgc), acetone extraction, liquid chromatography (lc), infrared analysis (ir), and x-ray or scanning electron microscope (sem) analysis. Physical and mechanical tests determine properties such as thermal conductivity, specific heat, tensile or flexural strength, and hardness. Much attention has been placed on noise /vibration characterization. The use of modal analysis and damping measurements has increased (see Noise POLLUTION AND ABATEMENT). [Pg.275]

Most of the physical properties of the polymer (heat capacity, expansion coefficient, storage modulus, gas permeability, refractive index, etc.) undergo a discontinuous variation at the glass transition. The most frequently used methods to determine Tg are differential scanning calorimetry (DSC), thermomechanical analysis (TMA), and dynamic mechanical thermal analysis (DMTA). But several other techniques may be also employed, such as the measurement of the complex dielectric permittivity as a function of temperature. The shape of variation of corresponding properties is shown in Fig. 4.1. [Pg.133]

Many different methods can be used to measure the degree of crosslinking within an epoxy specimen. These methods include chemical analysis and infrared and near infrared spectroscopy. They measure the extent to which the epoxy groups are consumed. Other methods are based on the measurements of properties that are directly or indirectly related to the extent and nature of crosslinks. These properties are the heat distortion temperature, glass transition temperature, hardness, electrical resistivity, degree of solvent swelling and dynamic mechanical properties, and thermal expansion rate. The methods of measurement are described in Chap. 20. [Pg.64]

Glass transition temperature, Tg, and storage modulus, E , were measured to explore how the pigment dispersion affects the material (i.e. cross-link density) and mechanical properties. Both Tg and E were determined from dynamic mechanical analysis method using a dynamic mechanical thermal analyzer (DMTA, TA Instruments RSA III) equipped with transient testing capability. A minimum of 3 to 4 specimens were analyzed from each sample. The estimated uncertainties of data are one-standard deviation. [Pg.303]

Many relatively slow or static methods have been used to measure Tg. These include techniques for determining the density or specific volume of the polymer as a function of temperature (cf. Fig. 11-1) as well as measurements of refractive index, elastic modulus, and other properties. Differential thermal analysis and differential scanning calorimetry are widely used for this purpose at present, with simple extrapolative eorrections for the effects of heating or cording rates on the observed values of Tg. These two methods reflect the changes in specific heat of the polymer at the glass-to-rubber transition. Dynamic mechanical measurements, which are described in Section 11.5, are also widely employed for locating Tg. [Pg.402]


See other pages where Thermal analysis using mechanical property measurement is mentioned: [Pg.722]    [Pg.29]    [Pg.359]    [Pg.29]    [Pg.86]    [Pg.10]    [Pg.217]    [Pg.120]    [Pg.275]    [Pg.876]    [Pg.439]    [Pg.69]    [Pg.151]    [Pg.276]    [Pg.287]    [Pg.804]    [Pg.295]    [Pg.296]    [Pg.8]    [Pg.111]    [Pg.195]    [Pg.301]    [Pg.175]    [Pg.155]    [Pg.724]    [Pg.204]    [Pg.279]    [Pg.452]    [Pg.283]    [Pg.190]    [Pg.296]    [Pg.530]    [Pg.541]    [Pg.548]   


SEARCH



Mechanical analysis

Mechanical measurement

Mechanism thermal

Properties measured

THERMAL MECHANICAL

Thermal analysis measurements

Thermal measurements

Thermal mechanical analysis

Thermal property measurements

Thermal-mechanical properties

Using Properties

© 2024 chempedia.info