Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal activation, iron carbonyl

The activation of silylene complexes is induced both photochemically or by addition of a base, e.g. pyridine. A similar base-induced cleavage is known from the chemistry of carbene complexes however, in this case the carbenes so formed dimerize to give alkenes. Finally, a silylene cleavage can also be achieved thermally. Melting of the compounds 4-7 in high vacuum yields the dimeric complexes 48-51 with loss of HMPA. The dimers, on the other hand, can be transformed into polysilanes and iron carbonyl clusters above 120 °C. In all cases, the resulting polymers have been identified by spectroscopic methods. [Pg.27]

Rhodium and cobalt carbonyls have long been known as thermally active hydroformylation catalysts. With thermal activation alone, however, they require higher temperatures and pressures than in the photocatalytic reaction. Iron carbonyl, on the other hand, is a poor hydroformylation catalyst at all temperatures under thermal activation. When irradiated under synthesis gas at 100 atm, the iron carbonyl catalyzes the hydroformylation of terminal olefins even at room temperatures, as was first discovered by P. Krusic. ESR studies suggested the formation of HFe9(C0) radicals as the active catalyst, /25, 26/. Our own results support this idea, 111,28/. Light is necessary to start the hydroformylation of 1-octene with the iron carbonyl catalyst. Once initiated, the reaction proceeds even in the... [Pg.152]

The present paper focuses on the interactions between iron and titania for samples prepared via the thermal decomposition of iron pentacarbonyl. (The results of ammonia synthesis studies over these samples have been reported elsewhere (4).) Since it has been reported that standard impregnation techniques cannot be used to prepare highly dispersed iron on titania (4), the use of iron carbonyl decomposition provides a potentially important catalyst preparation route. Studies of the decomposition process as a function of temperature are pertinent to the genesis of such Fe/Ti02 catalysts. For example, these studies are necessary to determine the state and dispersion of iron after the various activation or pretreatment steps. Moreover, such studies are required to understand the catalytic and adsorptive properties of these materials after partial decomposition, complete decarbonylation or hydrogen reduction. In short, Mossbauer spectroscopy was used in this study to monitor the state of iron in catalysts prepared by the decomposition of iron carbonyl. Complementary information about the amount of carbon monoxide associated with iron was provided by volumetric measurements. [Pg.10]

Photochemical activation (15) and thermal activation (11,16, 17) of iron carbonyl complexes In various zeolites have been reported. Part of our study Is to use Mossbauer spectroscopy to Investigate the behavior of Fe(C0)5 on several zeolites when activated photochemically and thermally. Another part of our study Is to Investigate the novel preparation method of Scherzer and Fort (18) that Introduces iron Into (in their study) zeolite NH Y as an anionic complex. Finally, we will report the preparation of ferrocene sublimed onto zeolite ZSM-5. The photochemical and thermal activation of these systems will be reported as well as preliminary results of the photochemical isomerization of olefins by Fe(C0)5 zeolites and the thermal activation of Fischer-Tropsch catalytic systems. It also should be noted here that our Mossbauer studies involve an in-situ pretreatment cell which can be heated to 500°C under various gaseous atmospheres. [Pg.303]

Novel iron carbonyl monomer, r)4-(2,4-hexadien-l-yl acrylate)tricarbonyl-iron, 23, was prepared and both homopolymerized and copolymerized with acrylonitrile, vinyl acetate, styrene, and methyl methacrylate using AIBN initiation in benzene.70,71 72 The reactivity ratios obtained demonstrated that 23 was a more active acrylate than ferrocenylmethyl acrylate, 2. The thermal decomposition of the soluble homopolymer in air at 200°C led to the formation of Fe203 particles within a cross-linked matrix. This monomer raised the glass transition temperatures of the copolymers.70 The T)4-(diene)tricarbonyliron functions of 23 in styrene copolymers were converted in high yields to TT-allyltetracarbonyliron cations in the presence of HBF4 and CO.71 Exposure to nucleophiles gave 1,4-addition products of the diene group.71... [Pg.10]

Aside from the thermal and photochemical activation of Fe(CO)5 and related iron carbonyl compounds, the field of iron catalyzed hydrogenation lay mostly dormant for decades. As outhned in the previous section, comprehensive follow-up papers on Fe(CO)5 chemistry had appeared but few new metal-ligand platforms for cata-... [Pg.89]

The efficiency and selectivity of a supported metal catalyst is closely related to the dispersion and particle size of the metal component and to the nature of the interaction between the metal and the support. For a particular metal, catalytic activity may be varied by changing the metal dispersion and the support thus, the method of synthesis and any pre-treatment of the catalyst is important in the overall process of catalyst evaluation. Supported metal catalysts have traditionally been prepared by impregnation techniques that involve treatment of a support with an aqueous solution of a metal salt followed by calcination (4). In the Fe/ZSM-5 system, the decomposition of the iron nitrate during calcination produces a-Fe2(>3 of relatively large crystallite size (>100 X). This study was initiated in an attempt to produce highly-dispersed, thermally stable supported metal catalysts that are effective for synthesis gas conversion. The carbonyl Fe3(CO) was used as the source of iron the supports used were the acidic zeolites ZSM-5 and mordenite and the non-acidic, larger pore zeolite, 13X. [Pg.398]

A variety of synthetic routes to monoene and polyene tri-fluorophosphine-transition metal complexes have been devised. Direct photochemically induced reaction of a metal-PF3 complex with an activated alkene or diene (method A) has proved useful only for iron, the products being either [Fe(PF3)4(alkene)J or [Fe(PF3)3(diene)] (194). Mixed carbonyl-trifluorophosphine complexes of the type [Fe(PF3)x(CO)3 x(diene)] result from either thermal or photochemical reactions of dieneiron carbonyl complexes and PF3 (52, 53) (method B). The compounds are fluxional. [Pg.77]

Besides viscosity and yield stress, the binder composition affects very significantly the thermal sensitivity of the feedstock s shear viscosity and yield stress. Figures 18 and 19 show, respectively, the carbonyl iron powder feedstock s activation energy for shear viscosity and yield stress with respect to EVA content in the binder. [Pg.249]


See other pages where Thermal activation, iron carbonyl is mentioned: [Pg.153]    [Pg.27]    [Pg.141]    [Pg.314]    [Pg.2574]    [Pg.91]    [Pg.117]    [Pg.2573]    [Pg.143]    [Pg.201]    [Pg.114]    [Pg.234]    [Pg.76]    [Pg.199]    [Pg.168]    [Pg.119]    [Pg.139]    [Pg.64]    [Pg.201]    [Pg.3]    [Pg.224]    [Pg.201]    [Pg.636]    [Pg.559]    [Pg.152]    [Pg.219]    [Pg.90]   


SEARCH



Carbonyl activation

Carbonyl thermal activation

Carbonylation Iron carbonyl

Carbonylation activity

Iron activation

Iron active

Thermal active

Thermally activated

© 2024 chempedia.info