Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Theory of colloid stability

The remainder of this contribution is organized as follows. In section C2.6.2, some well studied colloidal model systems are introduced. Methods for characterizing colloidal suspensions are presented in section C2.6.3. An essential starting point for understanding the behaviour of colloids is a description of the interactions between particles. Various factors contributing to these are discussed in section C2.6.4. Following on from this, theories of colloid stability and of the kinetics of aggregation are presented in section C2.6.5. Finally, section C2.6.6 is devoted to the phase behaviour of concentrated suspensions. [Pg.2668]

Based on the application of the established theory of colloid stability of water treatment particles [8,85-88], the colloidal particles in untreated water are attached to one another by van der waals forces and, therefore, always tend to aggregate unless kept apart by electrostatic repulsion forces arising from the presence of electrical charges on the particles. The aggregation process... [Pg.127]

In a number of recent publications (1, 2) microcrystailine cellulose dispersions (MCC) have been used as models to study different aspects of the papermaking process, especially with regard to its stability. One of the central points in the well established DLVO theory of colloidal stability is the critical coagulation concentration (CCC). In practice, it represents the minimum salt concentration that causes rapid coagulation of a dispersion and is an intimate part of the theoretical framework of the DLVO theory (3). Kratohvil et al (A) have studied this aspect of the DLVO theory with MCC and given values for the CCC for many salts, cationic... [Pg.377]

Derjaguin and Landau, and Verwey and Overbeek (1941-8) developed the DLVO theory of colloid stability. [Pg.12]

The well-known DLVO theory of colloid stability (10) attributes the state of flocculation to the balance between the van der Waals attractive forces and the repulsive electric double-layer forces at the liquid—solid interface. The potential at the double layer, called the zeta potential, is measured indirectly by electrophoretic mobility or streaming potential. The bridging flocculation by which polymer molecules are adsorbed on more than one particle results from charge effects, van der Waals forces, or hydrogen bonding (see COLLOIDS). [Pg.318]

Throughout most of this chapter the emphasis has been on the evaluation of zeta potentials from electrokinetic measurements. This emphasis is entirely fitting in view of the important role played by the potential in the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloidal stability. From a theoretical point of view, a fairly complete picture of the stability of dilute dispersions can be built up from a knowledge of potential, electrolyte content, Hamaker constants, and particle geometry, as we discuss in Chapter 13. From this perspective the fundamental importance of the f potential is evident. Below we present a brief list of some of the applications of electrokinetic measurements. [Pg.567]

A more quantitative measure of stability, known as the stability ratio, can be obtained by setting up and solving the equation for diffusive collisions between the particles. Quantitative formulations of stability, known as the Smoluchowski and Fuchs theories of colloid stability, are the centerpieces of classical colloid science. These and related issues are covered in Section 13.4. [Pg.578]

THE DERJAGUIN-LANDAU-VERWEY-OVERBEEK THEORY OF COLLOID STABILITY... [Pg.585]

A pair of polysaccharide molecules approaching each other in water exerts an interaction potential ( ) that is the algebraic sum of the competing attractive and repulsive forces. integrated over all pairs of molecules, is . This principle is embodied in the Deijaguin-Verwey-Landau-Overbeek (DLVO) theory of colloidal stability (Ross and Morrison, 1988). The equilibrium distance between the molecules is related to c, the volume of the hydrated particles, ionic strength, cosolute, nonsolvent additions, temperature, and shearing. [Pg.42]

The combined effect of attraction and repulsion forces has been treated by many investigators in terms borrowed from theories of colloidal stability (Weiss, 1972). These theories treat the adhesion of colloidal particles by taking into account three types of forces (a) electrostatic repulsion force (Hogg, Healy Fuerstenau, 1966) (b) London-Van der Waals molecular attraction force (Hamaker, 1937) (c) gravity force. The electrostatic repulsion force is due to the negative charges that exist on the cell membrane and on the deposition surface because of the development of electrostatic double layers when they are in contact with a solution. The London attraction force is due to the time distribution of the movement of electrons in each molecule and, therefore, it exists between each pair of molecules and consequently between each pair of particles. For example, this force is responsible, among other phenomena, for the condensation of vapors to liquids. [Pg.154]

The second issue is the extent of the decrease of the van der Waals interaction. Experiment and calculation of the van der Waals interactions between polystyrene latex beads and either a bare glass plane or a polystyrene coated glass plane [17] revealed that the Hamaker constant decreases only by about 25% at complete screening, while the experiments of Petrache et al. for neutral lipid bilayers require a decrease of about 75% (from 1.2kT to OAkT). Such a strong decrease of the van der Waals interaction upon addition of salt would be expected to have strong consequences in the general theory of colloid stability, and not only in the stability of lipid bilayers. [Pg.544]

Landau-Verwey-Overbeek (DLVO) theory of colloidal stability have been successful in qualitatively explaining microbial adhesion to solid substrata [8,13],... [Pg.140]

Aggregation of liposomes both in vitro and in vivo is one of their main stability problems. According to the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, or theory of colloidal stability, a colloidal system is stable if the electrostatic repulsion forces between two particles are larger than the attraction van der Waals forces. Therefore charged liposomal formulations are highly desirable. Manipulation of... [Pg.451]

Theories of colloid stability based on electrostatics go way back beyond the DLVO theory, to the Gouy-Chapman theory of the electrical double layer proposed in the early 1910s and the Stem theory of counterion condensation proposed in 1924. There was much weighty speculation about the counterion distribution around colloidal particles throughout the 20th century, but nobody succeeded in measuring it until our work in 1997. This work is described in detail in Chapter 8. [Pg.267]

Latex stability will be determined by the combined effect of two factors the probability of collision between particles and the fraction of the encounters between particles which lead to permanent contact. Tha first factor, the collision frequency, will increase with increasing particle size and particle number. It will also increase with increasing shear rate. The influence of various test conditions on the second factor ought to be discussed on the basis of the DLVO theory of colloid stability. [Pg.264]


See other pages where Theory of colloid stability is mentioned: [Pg.332]    [Pg.285]    [Pg.4]    [Pg.140]    [Pg.141]    [Pg.679]    [Pg.265]    [Pg.37]    [Pg.367]    [Pg.393]    [Pg.10]    [Pg.11]    [Pg.25]    [Pg.27]    [Pg.29]    [Pg.31]    [Pg.33]    [Pg.35]    [Pg.160]    [Pg.191]    [Pg.264]    [Pg.88]    [Pg.420]    [Pg.422]    [Pg.424]    [Pg.426]    [Pg.428]    [Pg.430]   
See also in sourсe #XX -- [ Pg.8 , Pg.25 , Pg.203 ]




SEARCH



Applications of colloid stability theory to other systems

Colloid stability

Colloid stability, stabilization

Colloid stabilizers

Colloidal stability theory

Colloidal stabilization

Colloidal stabilizers

Colloidal stabilizing

Colloids theory

Coulombic Attraction Theory of Colloid Stability

DLVO theory of colloidal stability

DLVO theory, of colloid stability

Derjaguin-Landau-Verwey-Overbeek theory of colloid stability

Stability of colloids

Stability theories

Stabilization of colloids

The Coulombic Attraction Theory of Colloid Stability

© 2024 chempedia.info