Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Theoretical background, model

Theoretical Background. Modeling of the (average) termination rate coefficient, t,copo, at low monomer conversions as a function of the initial monomer feed in the reaction mixture has been thoroughly reviewed by Fukuda and coworkers (76). The present chapter considers the most important models presented in Reference 76. [Pg.1896]

Local Thermodynamic Equilibrium (LTE). This LTE model is of historical importance only. The idea was that under ion bombardment a near-surface plasma is generated, in which the sputtered atoms are ionized [3.48]. The plasma should be under local equilibrium, so that the Saha-Eggert equation for determination of the ionization probability can be used. The important condition was the plasma temperature, and this could be determined from a knowledge of the concentration of one of the elements present. The theoretical background of the model is not applicable. The reason why it gives semi-quantitative results is that the exponential term of the Saha-Eggert equation also fits quantum-mechanical expressions. [Pg.108]

However, before proceeding with the description of simulation data, we would like to comment the theoretical background. Similarly to the previous example, in order to obtain the pair correlation function of matrix spheres we solve the common Ornstein-Zernike equation complemented by the PY closure. Next, we would like to consider the adsorption of a hard sphere fluid in a microporous environment provided by a disordered matrix of permeable species. The fluid to be adsorbed is considered at density pj = pj-Of. The equilibrium between an adsorbed fluid and its bulk counterpart (i.e., in the absence of the matrix) occurs at constant chemical potential. However, in the theoretical procedure we need to choose the value for the fluid density first, and calculate the chemical potential afterwards. The ROZ equations, (22) and (23), are applied to decribe the fluid-matrix and fluid-fluid correlations. These correlations are considered by using the PY closure, such that the ROZ equations take the Madden-Glandt form as in the previous example. The structural properties in terms of the pair correlation functions (the fluid-matrix function is of special interest for models with permeabihty) cannot represent the only issue to investigate. Moreover, to perform comparisons of the structure under different conditions we need to calculate the adsorption isotherms pf jSpf). The chemical potential of a... [Pg.313]

II electronic states, 634-640 theoretical background, 625-626 triatomic molecules, 611-615 pragmatic models, 620-621 Ab initio multiple spawning (AIMS) conical intersection location, 491-492 direct molecular dynamics, 411-414 theoretical background, 360-361 Adiabatic approximation geometric phase theory ... [Pg.66]

Longuet-Higgins phase-based treatment, three-particle reactive system, 157-168 theoretical background, 43-44 observability, 208 quantum theory, 200 Phase-inverting reactions molecular model, 496-499 phase-change rule, pericyclic reactions, 449-450... [Pg.92]

Abstract This chapter reviews the theoretical background for continuum models of solvation, recent advances in their implementation, and illustrative examples of their use. Continuum models are the most efficient way to include condensed-phase effects into quantum mechanical calculations, and this is typically accomplished by the using self-consistent reaction field (SCRF) approach for the electrostatic component. This approach does not automatically include the non-electrostatic component of solvation, and we review various approaches for including that aspect. The performance of various models is compared for a number of applications, with emphasis on heterocyclic tautomeric equilibria because they have been the subject of the widest variety of studies. For nonequilibrium applications, e.g., dynamics and spectroscopy, one must consider the various time scales of the solvation process and the dynamical process under consideration, and the final section of the review discusses these issues. [Pg.1]

Before we can enter a discussion of the redox processes involved in the two mechanisms defined above, we need a simple theoretical background which provides relevant insights into the phenomenon of ET. The Marcus theory of outer-sphere ET provides such a framework for the delineation of mechanistic domains, thanks to its origin in a simple model and its classical nature (Marcus, 1964 Marcus and Sutin, 1985 for applications in organic chemistry, see Eberson, 1982b, 1987). [Pg.96]

Langmuir model, 38 164-166 polynomial model, 38 167 theoretical background, 38 150-175 thermodynamics, 38 150-163 mobile, 26 360 modes, hydrogenolysis, 30 44 monolayer dispersion, 37 33-34 of NHj, 34 171... [Pg.40]

The various methods used in quantum chemistry make it possible to compute equilibrium intermolecular distances, to describe intermolecular forces and chemical reactions too. The usual way to calculate these properties is based on the independent particle model this is the Hartree-Fock method. The expansion of one-electron wave-functions (molecular orbitals) in practice requires technical work on computers. It was believed for years and years that ab initio computations will become a routine task even for large molecules. In spite of the enormous increase and development in computer technique, however, this expectation has not been fulfilled. The treatment of large, extended molecular systems still needs special theoretical background. In other words, some approximations should be used in the methods which describe the properties of molecules of large size and/or interacting systems. The further approximations are to be chosen carefully this caution is especially important when going beyond the HF level. The inclusion of the electron correlation in the calculations in a convenient way is still one of the most significant tasks of quantum chemistry. [Pg.41]

The article is organized as follows. In the next Section we present a brief outline of the theoretical background for the present work. Section 3 contains summaries of the SC models for the electronic mechanisms of the gas-phase Diels-Alder reaction between butadiene andethene [11] and the 1,3-dipolar cycloaddition of fulminic acid to ethyne [12]. In Section 4 we provide, for the first time, a description of the SC model for the electronic mechanism of the gas-phase disrotatory electrocyclic ring-opening of cyclohexadiene. Conclusions and final comments are presented in Section 5. [Pg.329]

The first attempt to explain the characteristic properties of molecular spectra in terms of the quantum mechanical equation of motion was undertaken by Born and Oppenheimer. The method presented in their famous paper of 1927 forms the theoretical background of the present analysis. The discussion of vibronic spectra is based on a model that reflects the discovered hierarchy of molecular energy levels. In most cases for molecules, there is a pattern followed in which each electronic state has an infrastructure built of vibrational energy levels, and in turn each vibrational state consists of rotational levels. In accordance with this scheme the total energy, has three distinct components of different orders of magnitude,... [Pg.149]


See other pages where Theoretical background, model is mentioned: [Pg.13]    [Pg.443]    [Pg.40]    [Pg.612]    [Pg.76]    [Pg.68]    [Pg.74]    [Pg.74]    [Pg.85]    [Pg.89]    [Pg.94]    [Pg.101]    [Pg.103]    [Pg.339]    [Pg.180]    [Pg.24]    [Pg.427]    [Pg.83]    [Pg.206]    [Pg.118]    [Pg.39]    [Pg.2]    [Pg.37]    [Pg.34]    [Pg.361]   


SEARCH



Model background

Numerical modelling theoretical background

Theoretical background

Theoretical model

Theoretical modeling

Theoretical modelling

© 2024 chempedia.info