Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

The Equations of Motion

Two simulation methods—Monte Carlo and molecular dynamics—allow calculation of the density profile and pressure difference of Eq. III-44 across the vapor-liquid interface [64, 65]. In the former method, the initial system consists of N molecules in assumed positions. An intermolecule potential function is chosen, such as the Lennard-Jones potential, and the positions are randomly varied until the energy of the system is at a minimum. The resulting configuration is taken to be the equilibrium one. In the molecular dynamics approach, the N molecules are given initial positions and velocities and the equations of motion are solved to follow the ensuing collisions until the set shows constant time-average thermodynamic properties. Both methods are computer intensive yet widely used. [Pg.63]

In the presence of some fomi of relaxation the equations of motion must be supplemented by a temi involving a relaxation superoperator—superoperator because it maps one operator into another operator. The literature on the correct fomi of such a superoperator is large, contradictory and incomplete. In brief, the extant theories can be divided into two kinds, those without memory relaxation (Markovian) Tp and those with memory... [Pg.233]

The volume of a Y -space-volume-element does not change in the course of time if each of its points traces out a trajectory in Y space determined by the equations of motion. Equivalently, the Jacobian... [Pg.383]

Consider, at t = 0, some non-equilibrium ensemble density P g(P. q°) on the constant energy hypersurface S, such that it is nonnalized to one. By Liouville s theorem, at a later time t the ensemble density becomes ((t) t(p. q)), where q) is die function that takes die current phase coordinates (p, q) to their initial values time (0 ago the fimctioii ( ) is uniquely detemiined by the equations of motion. The expectation value of any dynamical variable ilat time t is therefore... [Pg.388]

The alternative simulation approaches are based on molecular dynamics calculations. This is conceptually simpler that the Monte Carlo method the equations of motion are solved for a system of A molecules, and periodic boundary conditions are again imposed. This method pennits both the equilibrium and transport properties of the system to be evaluated, essentially by numerically solvmg the equations of motion... [Pg.564]

We consider the motion of a large particle in a fluid composed of lighter, smaller particles. We also suppose that the mean free path of the particles in the fluid, X, is much smaller than a characteristic size, R, of the large particle. The analysis of the motion of the large particle is based upon a method due to Langevin. Consider the equation of motion of the large particle. We write it in the fonn... [Pg.687]

In the general case, (A3.2.23) caimot hold because it leads to (A3.2.24) which requires GE = (GE ) which is m general not true. Indeed, the simple example of the Brownian motion of a hannonic oscillator suffices to make the point [7,14,18]. In this case the equations of motion are [3, 7]... [Pg.699]

If the surface tension is a fiinction of position, then there is an additional temi, da/dx, to the right-hand side in the last equation. From the above description it can be shown drat the equation of motion for the Fourier component of the broken synnnetry variable is... [Pg.727]

Although in principle the microscopic Hamiltonian contains the infonnation necessary to describe the phase separation kinetics, in practice the large number of degrees of freedom in the system makes it necessary to construct a reduced description. Generally, a subset of slowly varying macrovariables, such as the hydrodynamic modes, is a usefiil starting point. The equation of motion of the macrovariables can, in principle, be derived from the microscopic... [Pg.735]

Quantum mechanically, the time dependence of the initially prepared state of A is given by its wavefimc /("f), which may be detennined from the equation of motion... [Pg.1008]

The equations of motion within such a field are given by ... [Pg.1340]

Relaxation or chemical exchange can be easily added in Liouville space, by including a Redfield matrix, R, for relaxation, or a kinetic matrix, K, to describe exchange. The equation of motion for a general spin system becomes equation (B2.4.28). [Pg.2099]

Molecular dynamics consists of the brute-force solution of Newton s equations of motion. It is necessary to encode in the program the potential energy and force law of interaction between molecules the equations of motion are solved numerically, by finite difference techniques. The system evolution corresponds closely to what happens in real life and allows us to calculate dynamical properties, as well as thennodynamic and structural fiinctions. For a range of molecular models, packaged routines are available, either connnercially or tlirough the academic conmuinity. [Pg.2241]

As an alternative to sampling the canonical distribution, it is possible to devise equations of motion for which the iiiechanicaT temperature is constrained to a constant value [84, 85, 86]. The equations of motion are... [Pg.2261]

Equation (Cl.4.42) expresses the equation of motion of a damped hannonic oscillator with mass m. [Pg.2469]

It is possible to parametarize the time-dependent Schrddinger equation in such a fashion that the equations of motion for the parameters appear as classical equations of motion, however, with a potential that is in principle more general than that used in ordinary Newtonian mechanics. However, it is important that the method is still exact and general even if the trajectories aie propagated by using the ordinary classical mechanical equations of motion. [Pg.73]

Projecting the nuclear solutions Xt( ) oti the Hilbert space of the electronic states (r, R) and working in the projected Hilbert space of the nuclear coordinates R. The equation of motion (the nuclear Schrddinger equation) is shown in Eq. (91) and the Lagrangean in Eq. (96). In either expression, the terms with represent couplings between the nuclear wave functions X (K) and X (R). that is, (virtual) transitions (or admixtures) between the nuclear states. (These may represent transitions also for the electronic states, which would get expressed in finite electionic lifetimes.) The expression for the transition matrix is not elementaiy, since the coupling terms are of a derivative type. [Pg.151]

In this minimal END approximation, the electronic basis functions are centered on the average nuclear positions, which are dynamical variables. In the limit of classical nuclei, these are conventional basis functions used in moleculai electronic structure theoiy, and they follow the dynamically changing nuclear positions. As can be seen from the equations of motion discussed above the evolution of the nuclear positions and momenta is governed by Newton-like equations with Hellman-Feynman forces, while the electronic dynamical variables are complex molecular orbital coefficients that follow equations that look like those of the time-dependent Hartree-Fock (TDHF) approximation [24]. The coupling terms in the dynamical metric are the well-known nonadiabatic terms due to the fact that the basis moves with the dynamically changing nuclear positions. [Pg.228]

Finally, Gaussian wavepacket methods are described in which the nuclear wavepacket is described by one or more Gaussian functions. Again the equations of motion to be solved have the fomi of classical trajectories in phase space. Now, however, each trajectory has a quantum character due to its spread in coordinate space. [Pg.258]

The center of the wavepacket thus evolves along the trajectory defined by classical mechanics. This is in fact a general result for wavepackets in a hannonic potential, and follows from the Ehrenfest theorem [147] [see Eqs. (154,155) in Appendix C]. The equations of motion are straightforward to integrate, with the exception of the width matrix, Eq. (44). This equation is numerically unstable, and has been found to cause problems in practical applications using Morse potentials [148]. As a result, Heller inboduced the P-Z method as an alternative propagation method [24]. In this, the matrix A, is rewritten as a product of matrices... [Pg.273]

One drawback is that, as a result of the time-dependent potential due to the LHA, the energy is not conserved. Approaches to correct for this approximation, which is valid when the Gaussian wavepacket is narrow with respect to the width of the potential, include that of Coalson and Karplus [149], who use a variational principle to derive the equations of motion. This results in replacing the function values and derivatives at the central point, V, V, and V" in Eq. (41), by values averaged over the wavepacket. [Pg.274]

As shown above in Section UFA, the use of wavepacket dynamics to study non-adiabatic systems is a trivial extension of the methods described for adiabatic systems in Section H E. The equations of motion have the same form, but now there is a wavepacket for each electronic state. The motions of these packets are then coupled by the non-adiabatic terms in the Hamiltonian operator matrix elements. In contrast, the methods in Section II that use trajectories in phase space to represent the time evolution of the nuclear wave function cannot be... [Pg.288]

Furthennore, we obtain the equation of motion of the zeroth-order nuclear wave function ... [Pg.405]

We can only determine and up to now. Later, we shall demonstrate that this equation is just the equations of motion of haimonic nucleai vibrations. The set of eigenstates of Eq. (43) can be written as IXBr). symbolizing that they are the vibrational modes of the nth electronic level, where v = (ui, 112,..., v ) if Q is N dimensional, and vi is the vibrational quantum number of the I th mode. [Pg.406]

To obtain the force constant for constructing the equation of motion of the nuclear motion in the second-order perturbation, we need to know about the excited states, too. With the minimal basis set, the only excited-state spatial orbital for one electron is... [Pg.439]

Given this effective potential, it is possible to define a constant temperature molecular dynamics algorithm such that the trajectory samples the distribution Pg(r ). The equation of motion then takes on a simple and suggestive form... [Pg.207]

Here we suggest an alternative route to the problem in which the equations of motion are formulated as a boundary value problem. This limits the... [Pg.263]

Another difference is related to the mathematical formulation. Equation (1) is deterministic and does not include explicit stochasticity. In contrast, the equations of motion for a Brownian particle include noise. Nevertheless, similar algorithms are adopted to solve the two differential equations as outlined below. The most common approach is to numerically integrate the above differential equations using small time steps and preset initial values. [Pg.266]

The last approximation is for finite At. When the equations of motions are solved exactly, the model provides the correct answer (cr = 0). When the time step is sufficiently large we argue below that equation (10) is still reasonable. The essential assumption is for the intermediate range of time steps for which the errors may maintain correlation. We do not consider instabilities of the numerical solution which are easy to detect, and in which the errors are clearly correlated even for large separation in time. Calculation of the correlation of the errors (as defined in equation (9)) can further test the assumption of no correlation of Q t)Q t )). [Pg.268]

The qualitative solution behavior becomes more apparent when going to local coordinates, i.e., we rewrite the equations of motion in terms of the center of mass... [Pg.286]


See other pages where The Equations of Motion is mentioned: [Pg.235]    [Pg.235]    [Pg.382]    [Pg.385]    [Pg.722]    [Pg.726]    [Pg.728]    [Pg.1346]    [Pg.2253]    [Pg.73]    [Pg.267]    [Pg.296]    [Pg.17]    [Pg.156]    [Pg.269]    [Pg.284]    [Pg.286]    [Pg.291]    [Pg.294]    [Pg.297]    [Pg.299]   


SEARCH



Equations of motion

Motion equations

© 2024 chempedia.info