Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

THE COUPLING EFFECT

In a single stage installation, overall collection efficiency is not influenced by the external terminus of the gas discharge tube, whether a round elbow, Fig. 12(a), a mitered elbow, Fig. 12(b), or a volute housing, [Pg.785]


It is also worthy of note that large values of Poisson s Ratio can occur in a laminate. In this case a peak value of over 1.5 is observed - something which would be impossible in an isotropic material. Large values of Poisson s Ratio are a characteristic of unidirectional fibre composites and arise due to the coupling effects between extension and shear which were referred to earlier. [Pg.217]

The overall set of partial differential equations that can be considered as a mathematical characterization of the processing system of gas-liquid dispersions should include such environmental parameters as composition, temperature, and velocity, in addition to the equations of bubble-size and residence-time distributions that describe the dependence of bubble nucleation and growth on the bubble environmental factors. A simultaneous solution of this set of differential equations with the appropriate initial and boundary conditions is needed to evaluate the behavior of the system. Subject to the Curie principle, this set of equations should include the possibilities of coupling effects among the various fluxes involved. In dispersions, the possibilities of couplings between fluxes that differ from each other by an odd tensorial rank exist. (An example is the coupling effect between diffusion of surfactants and the hydrodynamics of bubble velocity as treated in Section III.) As yet no analytical solution of the complete set of equations has been found because of the mathematical difficulties involved. To simplify matters, the pertinent transfer equation is usually solved independently, with some simplifying assumptions. [Pg.333]

In most cases, however, heat transfer and mass transfer occur simultaneously, and the coupled equation (230) thus takes into account the most general case of the coupling effects between the various fluxes involved. To solve Eq (230) with the appropriate initial and boundary conditions one can decouple the equation by making the transformation (G3)... [Pg.377]

The effect of local enthalpy at CHF is due primarily to the wall voidage, which impairs the critical flux, and secondarily to the bulk voidage, which affects the flow pattern. The coupled effects of local subcooling and flow velocity in a subcooled bubbly flow were first reported by Griff el and Bonilla (1965), neglecting the pressure effect ... [Pg.405]

A simpler version of the discrete element model is the so-called trajectory model. In the trajectory approach, droplet field is modeled as a series of trajectories that emanate from the atomizer or a starting point. The coupling effects are included by summing the heat release to and the drag force on the gas phase. This approach can be used for steady dilute flows. [Pg.368]

Graham LE, Wilcox LW (2000) Algae. Prentice Hall, Upper Saddle River, NJ Greer SP, Amsler CD (2002) Light boundaries and the coupled effects of surface hydrophobicity and light on spore settlement in the brown algaHincksia irregularis (Phaeophyceae). J Phycol 38 116-124... [Pg.307]

The coupling effects of solvent/salt on electrolyte stability can also be observed when mixture solvents are used, and the stability of the electrolyte can be much improved when a stable solvent/salt is selected. For example, the room-temperature breakdown voltage of electrolytes LiX/EC/DEE lies in the order " ... [Pg.85]

Thus, enhancing intercellular coupling may exert a prophylactic effect against arrhythmia if arrhythmia is due to uncoupling. However, if the coupling effect is unselective, it would probably postpone an impairing effect as discussed above for ischemia. From this theoretical point of view selective couplingenhancing effects on the previously uncoupled tissue would be desirable rather than unselective. [Pg.90]

The entry-length region is characterized by a diffusive process wherein the flow must adjust to the zero-velocity no-slip condition on the wall. A momentum boundary layer grows out from the wall, with velocities near the wall being retarded relative to the uniform inlet velocity and velocities near the centerline being accelerated to maintain mass continuity. In steady state, this behavior is described by the coupled effects of the mass continuity and axial momentum equations. For a constant-viscosity fluid,... [Pg.173]

Generally speaking, we prefer to use the equations in the form of Eqs 6.40 and 6.41, rather than transform to the F form. For the numerical solutions used here, there is no advantage to the single third-order equation compared to the system of equations. Furthermore the F equation has lost any clear physical meaning. The physical form of the equations can accommodate variable densities or viscosities without difficulty, but the F form of the equations loses its appeal in this case. Finally, the overall objective is to include variable properties, as well as to consider the coupled effects of thermal energy and species transport. Therefore the discussion on the F form of the equations is included here mainly for historical perspective. [Pg.265]

In Eqs. 2.20 and 2.22, the diagonal terms, Laa, are called direct coefficients they couple each flux to its conjugate driving force. The off-diagonal terms are called coupling coefficients and are responsible for the coupling effects (also called cross effects) identified above. [Pg.30]

In order to realize, in practice, the coupling effects of silanes, it is necessary to standardize the conditions of application such that the silane is able to provide a molecular bridge without itself becoming a weak interphase between the fiber and matrix. As already mentioned, the principal experimental parameters to be controlled in the application of silane coupling agents on the fibers are the concentration, the solvent, and the treatment time. In order to arrive at the best conditions for each parameter, the IFSS was determined for each set of treatment conditions. Optimization of the conditions of silane application was thus progressively achieved. [Pg.478]

The major purpose of this study is to investigate the coupling effects between specific ligand binding and the whole-molecule-half-molecule interaction, particularly as they produce nonideality in diffusion. This is best accomplished (27) by examining plots of the fringe deviation function, Qh as defined by Equation 4, as a function of the path difference function f(zj), as defined by Equation 1. [Pg.155]

The terms in a2 in these equations are very much less than the term in av of eqn(4). Physically this is a consequence of the coupling between oscillators of different frequency being very much weaker than between those of the same frequency. Hammaker et al estimated the coupling effect to be an order of magnitude less. Thus in a dilute isotopic mixture the minor component is effectively decoupled from its surroundings. [Pg.60]

This equation shows the coupling effect between the metal ion [M] and the hydrogen ion [H] because both appear in the concentration term of the Fick s law expression linked by the equilibrium reaction constant K. Thus, there will be a positive uphill flux of metal ion from the downstream to the upstream solution (that is, in the direction l o) as long as... [Pg.434]

The coupling effects of various poromechanical processes on the response of a porous medium have been successfully addressed by Biot s theory of poroelasticity and its extensions [3,4,5,8,2], The chemical effects have also been addressed by considering interaction between the porous matrix and a pore fluid comprising of a solute and solvent [10, 7, 6], Comprehensive anisotropic poromechanics formulations and corresponding solutions for the inclined borehole problem have been presented [4—2], However, the coupled chemo-thermo-hydro-mechanical response of an anisotropic porous medium has not been addressed to date. [Pg.141]

On the whole, as a result of the coupled effect of climatic and anthropogenic impacts, the salinity maximum in the Sea of Azov in 1975-1977 exceeded the natural norm by up to 3.0 psu and, in Taganrog Bay, even more. Beginning from 1978, the regime of the sea reached its new water-rich phase, the mean annual salinity of the sea acquired a tendency to fall, and, in 1980s, it comprised 11-12 psu. By 2000 salinity lowered even to 10-11 psu. [Pg.72]

In the 1960s, the start of application of computers to the practice of marine research gave a pulse to the development of numerical diagnostic hydrodynamic models [33]. In them, the SLE (or the integral stream function) field is calculated from the three-dimensional density field in the equation of potential vorticity balance over the entire water column from the surface to the bottom. The iterative computational procedure is repeated until a stationary condition of the SLE (or the integral stream function) is reached at the specified fixed density field. Then, from equations of momentum balance, horizontal components of the current vector are obtained, while the continuity equation provides the calculations of the vertical component. The advantage of this approach is related to the absence of the problem of the choice of the zero surface and to the account for the coupled effect of the baroclinicity of... [Pg.175]

The modelling of kinetics at modified electrodes has received much attention over the last 10 years [1-11], mainly due to the interest in the potential uses of chemically modified electrodes in analytical applications. The first treatment published by Andrieux et al. [5] was closely followed by a complimentary treatment by Albery and Hillman [1, 2]. Both deal with the simplest basic case, that is, the coupled effects of diffusion and reaction for a second-order reaction between a species freely diffusing in the bulk solution and a redox mediator species trapped within the film at the modified electrode surface. The results obtained by the two treatments are essentially identical, although the two approaches are slightly different. [Pg.35]

Another well-known example is the coupling between mass flow and heat flow. As a result, an induced effect known as thermal diffusion (Soret effect) may occur because of the temperature gradient. This indicates that a mass flow of component A may occur without the concentration gradient of component A. Dufour effect is an induced heat flow caused by the concentration gradient. These effects represent examples of couplings between two vectorial flows. The cross-phenomenological coefficients relate the Dufour and Soret effects. In order to describe the coupling effects, the thermal diffusion ratio is introduced besides the transport coefficients of thermal conductivity and dififusivity. [Pg.91]

The optimal Reynolds number defines the operating conditions at which the cylindrical system performs a required heat and mass transport, and generates the minimum entropy. These expressions offer a thermodynamically optimum design. Some expressions for the entropy production in a multicomponent fluid take into account the coupling effects between heat and mass transfers. The resulting diffusion fluxes obey generalized Stefan-Maxwell relations including the effects of ordinary, forced, pressure, and thermal diffusion. [Pg.174]


See other pages where THE COUPLING EFFECT is mentioned: [Pg.405]    [Pg.321]    [Pg.210]    [Pg.113]    [Pg.438]    [Pg.313]    [Pg.257]    [Pg.785]    [Pg.786]    [Pg.99]    [Pg.247]    [Pg.151]    [Pg.178]    [Pg.208]    [Pg.264]    [Pg.180]    [Pg.485]    [Pg.1015]    [Pg.324]    [Pg.63]    [Pg.138]    [Pg.144]    [Pg.193]    [Pg.243]    [Pg.243]    [Pg.277]    [Pg.400]    [Pg.401]    [Pg.159]   


SEARCH



Effective coupling

FACTORS THAT INFLUENCE THE SIGN AND MAGNITUDE OF SECOND-ORDER (STRONG) COUPLING EFFECTS

© 2024 chempedia.info